

ECOLE INTER-FTATS D'INGENIEURS DE

L'ÉQUIPEMENT RURAL

03 B.P. 7023 OUAGADOUGO!! 03 BURKINA FASO

MEMOIRE DE FIN D'ETUDE

Présenté par :

IBRAHIM Boubacar

Analyse de la variabilité climatique au Burkina Faso au cours de la seconde moitié du XXème siècle

MENTION:


BIEN

(H

Benin - Burkina - Cameroun - Centafrique - Congo - Côte d'Ivoire - Gabon Guinée - Mali - Mauritanie - Niger - Sénégal - Tchad - Togo

Encadrement F. CRES J. E. PATUREL

DEDICACE

A la mémoire de mon père, feu IBRAHIM Fodi Maïfada. Que la terre lui soit légère, «Amen».

A ma mère, NAMAKA Chékou dont les encouragements et les sages conseils me donnent toujours le courage de progresser.

A tous mes frères et sœurs.

A toute la grande famille Maïfada Nati de Guiwayé (Doutchi).

A tous et toutes mes ami(e)s.

E. I. E. R.

Enregistré à l'Arrivée

le 0 3 JUIL 2002/N°

62.02

REMERCIEMENTS

Je tiens à exprimer ma gratitude envers tous ceux qui de près ou de loin m'ont apporté leur soutien au cours de ma formation. Mes remerciements vont à l'endroit de :

- M. Jean Emmanuel PATUREL pour son encadrement, ses précieux conseils et surtout pour sa disponibilité.
- M. François CRES pour l'encadrement et le suivi de notre travail à toutes les étapes.
- M. Gil MAHE et le Directeur de la météorologie nationale du Burkina Faso, M. Frédéric
 OUATTARA pour leur collaboration et leurs conseils.
- ♦ Aux chercheurs et techniciens de l'IRD, notamment, Mme Agnès CRES, M. Pierre DIELLO pour leur collaboration
- ◆ A tout le staff directionnel de l'EIER, en particulier le Directeur du groupe EIER-ETSHER, M. Philipe MANGE et le Directeur des études M. Babacar DIENG pour tous les efforts qu'ils ont fournis dans la réussite et le bon déroulement de notre formation.

C'est aussi l'occasion pour moi d'adresser mes remerciements à tous mes collègues de la 31^{ème} Promotion, qui malgré la diversité de nos sensibilités, ont entretenu une atmosphère de convivialité et de fraternité.

Je n'oublie pas également mes amis de l'université de Cocody (Abidjan).

AVANT PROPOS

La maîtrise des ressources en eau est un des éléments déterminants pour la sécurisation de la production agricole. C'est le cas particulièrement dans la zone sahélienne de l'Afrique soumise à de fortes variations saisonnières et inter-arnuelles de la précipitation. La mise en valeur des ressources en eau pour l'agriculture, notamment par le biais de petits aménagements hydroagricoles, requiert une bonne connaissance des régimes pluviométriques et hydrologiques.

Notre étude vise à une connaissance du changement climatique survenu au Burkina Faso au cours de la seconde moitié du 20^{ème} siècle à partir de l'étude des séries de données de certains paramètres climatiques. Cette étude fait suite à un travail entrepris l'année passée (Juin 2001) sur des séries annuelles des paramètres climatiques. Cette étude consiste à approfondir les résultats de la précédente étude en travaillant à un pas de temps plus faible.

Notre étude s'inscrit dans le cadre du mémoire de fin d'études à l'EIER.

Tous les résultats que nous avons obtenus à travers cette étude sont consignés dans le présent document.

Avant de clore cet Avant-Propos, nous tenons à exprimer notre profonde reconnaissance à tous ceux qui de près ou de loin ont contribué à la réalisation de ce travail.

IBRAHIM Boubacar
Elève-ingénieur de l'Equipement Rural

ABREVIATIONS

A: Aléatoire

AEJ: Jet d'Est Africain

AGRHYMET: Centre Régional de Formation et d'Application en Agronomie et en Hydrologie

opérationnelle

ASECNA: Agence pour la Sécurité de la Navigation Aérienne en Afrique et à Madagascar

CIEH: Comité Interafricain d'Etudes Hydrauliques

ETP: Evapotranspiration

FIC: Front de Convergence Intertropical

FIT: Front Intertropical

FRIEND-AOC: Flow Regimes from International Experimental and Network Data / Afrique de l'Ouest et

Centrale

ICRISAT: International Crops Research Institute for the Semi-Arid Tropics

INRA: Institut National de Recherches Agronomiques

IRD : Institut de Recherche pour le Développement

NA: Non Aléatoire

UNESCO: Organisation des Nations Unies pour l'éducation, la science et la culture

TEJ: Jet d'Est Tropical

VR: Variation Relative

WMO / OMM : Organisation Météorologique Mondiale

AUTEUR: IBRAHIM Boubacar

Professeur responsable : François CRES Organismes encadreurs: IRD et la

Direction de la météorologie nationale du Burkina Faso

THEME

Analyse de la variabilité climatique au Burkina Faso au cours de la seconde moitié du $20^{\rm ème}$ siècle.

RESUME

Depuis quelques années, plusieurs études sont menées dans la connaissance de l'évolution du climat dans différentes régions du globe. Au Burkina Faso, pays sahélien, les résultats de ces études montrent qu'un changement climatique s'est produit aux alentours des années 1970. Ce changement se traduit principalement par une sécheresse qui dure depuis trente ans. Cette sécheresse a des conséquences néfastes sur le développement du pays.

Pour mieux orienter les projets de développement des études sont effectuées pour connaître la variabilité spatiale et temporelle des paramètres climatiques.

La présente étude fait partie du programme FRIEND-AOC de l'UNESCO, co-animé par l'IRD et l'EIER. Elle vise à mieux identifier cette variabilité climatique et ses manifestations au travers l'analyse des séries chronologiques des paramètres climatiques (insolation, évapotranspiration, température, humidité, pluviométrie) mesurés aux stations synoptiques du Burkina Faso.

Les résultats des différents tests statistiques utilisés montrent principalement deux périodes de ruptures (changement de la moyenne au sein de la série) dans la seconde moitié du 20^{ème} siècle, de 1966 à 1971 et de 1976 à 1983.

Les séries chronologiques d'évapotranspiration, d'insolation, de la température moyenne et minimale ont des ruptures de 1966 à 1971 pendant la saison des pluies avec une tendance à la hausse. Ces séries présentent aussi des ruptures de 1976 à 1983 pendant la saison sèche avec une tendance à la baisse. Les séries de température maximale ont aussi des ruptures au cours de la période de 1976 à 1971 pendant la saison des pluies avec une tendance à la hausse. Quant aux ruptures de ces séries au cours de la période de 1976 à 1983, elles apparaissent pendant la saison des pluies avec une tendance à la hausse et pendant la saison sèche avec une tendance à la baisse.

Mais d'une manière générale, la tendance de certains paramètres climatiques dont l'insolation, l'évapotranspiration et la température (minimale, moyenne et maximale), est à la hausse des années 1950 à nos jours

Les séries chronologiques d'humidité présentent des ruptures au cours des deux périodes et la tendance générale est à la baisse.

Les séries chronologiques de la pluviométrie ne présentent de ruptures que de 1966 à 1971 avec une tendance à la baisse.

La pluviométrie a diminué sur l'ensemble du territoire de près de 18% des années 1970 à aujourd'hui, cette diminution est de 29% au niveau de la station de Dori et 5% à la station de Gaoua.

Mots clefs : Burkina Faso, changement climatique, date de rupture, développement, tests statistiques

SOMMAIRE

DEDICACE	
REMERCIEMENTS	I
AVANT PROPOS	II
ABREVIATIONS	IV
	V
PREMIERE PARTIE : INTRODUCTION GENERA	.LE4
I - INTRODUCTION	
II - PROBLEMATIQUE	
III - OBJECTIFS DE L'ETUDE	
IV - METHODOLOGIE	(
v - LES PARAMETRES CLIMATIQUES DE L'ET	TUDE
DEUXIEME PARTIE : PRESENTATION DE LA Z	ONE D'ETUDE ET SES CARACTERISTIQUES
CLIMATIQUES	
TO THE TAX TO SEE A SECOND DISTRICT	
I - PRESENTATION DE LA ZONE D'ETUDE I.1 - Situation géographique	«««» «» «» «» «» «» «» «» «» «» «» «» «
I -2 Cadre physique	
I 2.1 - Relief et géologie	10
1.2.1 - Rener et geologie	10
II - CARACTERISTIQUES CLIMATIQUES	1
II.1 - Variation spatiale des paramètres	I(
II.2 - Mécanismes des saisons et définition de région	s climatiques1
II.3 - Facteurs pluviogènes	I
TROISIEME PARTIE : METHODES DE TRAITEN	MENT DES DONNEES 19
I - INTRODUCTION	1
•	
II - METHODES STATISTIQUES UTILISEES DA	NS LE LOGICIEL KRONOSTAT10
II.1 – Test de rang	I
II.2 - Test de Pettitt	
II.3 – Segmentation de Hubert	1
TO A DE	
III - PRESENTATION DU LOGICIEL ICCARE	
III.1 - Méthode utilisée par l'INRA	
III.2 - Méthode graphique	
IV - INDICES DE SECHERESSE	2
IV.1 - Indice de l'écart à la moyenne (E _m)	
IV.2 - Indice de pluviosité (In)	
IV.3 - Indice de pluviométrie	2
	2
V - LA LOI DES FUITES	
V.1 – Introduction	

	22
V.2 – Estimation des paramètres	23 23
V.3 – Principes généraux	24
V.4 - Formulation	24
V.4.1 - CAS 1 : Δ connue	24
V.4.2 - CAS 2 : \(\Delta \) Inconnue	23
QUATRIEME PARTIE : STATIONS DE MESURE DES PARAMETRES CLIMATIQUES ET	
CONSTITUTIONS DES SERIES DE DONNEES	26
I - LOCALISATION DES STATIONS DE MESURE DES PARAMETRES CLIMATIQUES	
I - LUCALISATION DES STATIONS DE MESORE DES TARGUAZITAES CERTIFICA	27
I.1 - Choix des stations	27
II -PARAMETRES MESURES AU NIVEAU DES STATIONS SYNOPTIQUES	28
III - CONSTITUTION DES SERIES CHRONOLOGI-QUES DE DONNEES	29
III 1 — Séries de données d'insolation	29
III 2 _ Séries de données de temnérature	30
III 3 – Séries de données d'évapotranspiration	<i>3</i> U
III 4 – Séries de données d'humidité	J I
III.5 -Séries de données de la pluviométrie	31
CINQUIEME PARTIE: TRAITEMENT ET ANALYSE DES SERIES DE DONNEES	32
I - METHODOLOGIE	33
II - RAPPEL DES RESULTATS OBTENUS (étude 2001)	33
II 1 – Insolation	33
II 2 — Température	34
II 3 - Evanotranspiration	24
II 4 – Humidité	34
II.5 – Pluviométrie annuelle	34 24
II.6 - Pluviométrie mensuelle	34 2
II.7 – Nombre annuel de jours de pluie	34
III - EVOLUTION DES DIFFERENTS PARAMETRES	35
III 1 - Insolation	<i>3</i> 3
III 2 - Température	36
III 2.1 – Température maximale	, 30
III.2.2 – Température moyenne	٥٤ مو
III.2.3 – Température minimale	39 11
III.3 - Evapotranspiration	41
III.4 - Humidité	43
III.5 – Pluviométrie	11
III.5.1 - Pluviométrie annuelle	۳۳ 15
III.5.2 - Pluviométrie mensuelle	46
III.5.3 - Pluviométrie journalière	46
III.5.3.1 - Nombre annuel de jours de pluie	. 1 0
III.5.3.2 - Nombre mensuel de jours de pluie	47
III.5.3.3 - Nombre de jours de pluie dans la saison	48
III.5.3.4 - Durée de la saison des pluies	48
III.5.3.5 - Début et fin de la saison des pluies	48
III.5.3.6 - Catégorisation des pluies journaileres	50
IV - INDICES DE SECHERESSE	50

	•
IV.1 – Indice de Pluviosité	50
IV.2 - Indice de pluviométrie	51
V - LOI DES FUITES	51
VI - SYNTHESE DES RESULTATS	
TILL Date do minturo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
171 2 I demostice entre les différents parametres climanques	
VII 2.1 Máthadalagia	······································
TIT O O D I de montres et tondonos	
VI 2.2 Evolution englishes t temporelle	
TITO I a plantiomótrio	140140000000000000000000000000000000000
VI.4 - Conclusion partielle	
SIXIEME PARTIE : CONCLUSION GENERALE	58
CONCLUSION ET PERSPECTIVES	59
REFERENCES BIBLIOGRAPHIQUES	60
• .	
LISTES DES FIGURES	62
LISTES DES FIGURES	
LISTE DES TABLEAUX	65
LISTE DES TABLEAUX	
ANNEXES	67
ANNEXES	······································

ANALYSE DE LA VARIABILITE CLIMATIQUE AU BURKINA FASO AU COURS DE LA SECONDE MOITIE DU 20ence SIECLE	
---	--

PREMIERE PARTIE: INTRODUCTION GENERALE

I - INTRODUCTION

Les résultats d'importantes recherches montrent qu'un changement climatique a affecté l'ensemble de l'Afrique de l'Ouest au cours du 20éme siècle. Ce changement se caractérise dans cette région par une chute relativement importante de la pluviométrie, avec pour conséquence une série de sécheresses depuis le début des années 1970. Il y a eu d'autres sécheresses au cours du 20ème siècle mais celle-ci est très intense et dure depuis trente ans.

Le Burkina Faso, pays sahélien est énormément touché par ces séries de sécheresses qui se manifestent avec plus d'acuités durant ces dernières décennies.

Notre étude fait partie du programme FRIEND de l'UNESCO dont le but est d'approfondir la connaissance de la variabilité spatiale et temporelle des régimes pluviométriques et hydrologiques au moyen d'ensemble de données régionales. Elle poursuit un objectif orienté vers la description et la caractérisation dans l'espace et dans le temps du changement climatique.

Au cours de cette étude, nous allons essayer d'analyser les fluctuations pluviométriques enregistrées au Burkina Faso à partir des séries de données annuelles, mensuelles et journalières recueillies au niveau des stations synoptiques. Nous allons caractériser le déficit pluviométrique observé sur plusieurs années consécutives et ses relations avec d'autres paramètres climatiques dont l'insolation, l'évapotranspiration, l'humidité et la température.

Le traitement des données se fait avec des logiciels de calculs statistiques, KRONOSTAT et ICCARE et d'autres méthodes utilisées par l'équipe de recherche de l'IRD.

II - PROBLEMATIQUE

Les problèmes liés aux changements climatiques occupent une place importante parmi les préoccupations majeures de notre siècle. Plusieurs centres et instituts de recherche (IRD, ASECNA, CIEH, AGRHYMET, ICRISAT, ...etc.) mènent depuis quelques années des investigations pour caractériser ce changement climatique en Afrique de l'Ouest afin de bien orienter les programmes de développement. Dans cette région où les activités principales de la population, l'agriculture et l'élevage, sont tributaires des aléas climatiques, la recherche liée à la connaissance de la variabilité pluviométrique est une question importante. Au Burkina, comme partout en Afrique de l'Ouest, la pluie est considérée comme la ressource primaire à partir de laquelle vont se constituer les autres types de ressources, agricoles, hydrauliques, etc.

En effet la série de sécheresse observée durant ces trente dernières années en Afrique de l'Ouest et centrale a des conséquences souvent graves dans les pays sahéliens, ce qui justifie l'intérêt constant et soutenu porté à ces régions (Sircoulon, 1976; Oliviry, 1983; Nicholson, 1985; Hubert & Carbonel, 1987; Sircoulon, 1987; Hubert et al, 1989; Démarrée, 1990).

Ces séries de sécheresse ont engendré au Burkina Faso, un problème de mobilisation des ressources en eau, qui a amené le gouvernement à construire une multitude de petits barrages au cours de la seconde moitié du vingtième siècle.

III - OBJECTIFS DE L'ETUDE

Cette étude vise à caractériser le changement climatique au Burkina Faso et elle s'articule autour de trois points :

- > Détermination des périodes au cours desquelles le changement climatique s'est produit par l'application des tests de détection de ruptures dans les séries chronologiques de données.
- > Evolution des paramètres climatiques pour savoir si leur tendance est à la hausse ou à la baisse.
- > Mettre en relief les relations qui existent entre les différents paramètres climatiques.

IV - METHODOLOGIE

Pour atteindre les objectifs de notre étude, nous avons dans un premier temps évalué le travail à faire après l'entretien avec les différents encadreurs.

Ceci nous a permis de scinder l'étude en trois phases, qui sont les suivantes :

Première phase: Recherche documentaire

Cette partie consiste à connaître et à regrouper les résultats des études déjà faites sur le problème du changement climatique sur certaines régions d'Afrique et d'ailleurs.

Deuxième phase : Constitution et traitement des données

Après la détermination des différents paramètres climatiques à étudier, nous avons choisi les stations de mesure qui ont des séries de données chronologiques de bonne qualité et recouvrant bien notre zone d'étude. Nous avons essayé dans certains cas de compléter ces séries de données pour qu'elles aient une longueur acceptable pour les différentes analyses.

Le traitement des données vise à déterminer les dates de rupture des séries de données et la nature aléatoire ou non de ces séries. La série est non aléatoire si elle présente un comportement préférentiel traduisant une tendance.

Troisième phase: Analyse des résultats

L'analyse des résultats sera faite en tenant compte de deux facteurs, le temps et l'espace. Pour mieux appréhender l'évolution des paramètres climatiques en fonction de la latitude, les stations de mesure ont été classées par région climatique. Dans une région donnée, nous avons déterminé la station la plus représentative, à partir de laquelle nous comparerons l'évolution des

paramètres climatiques à son niveau et au niveau des stations représentant les autres régions. Un ensemble de représentations graphiques et cartographiques est utilisé pour visualiser les différents résultats.

V - LES PARAMETRES CLIMATIQUES DE L'ETUDE

Pour caractériser le changement climatique au Burkina Faso, nous allons étudier à partir des données recueillies au niveau des stations synoptiques, les paramètres suivants :

- > L'insolation (mensuelle)
- > La température maximale (mensuelle)
- > La température moyenne (mensuelle)
- > La température minimale (mensuelle)
- L'évapotranspiration (mensuelle)
- L'humidité (mensuelle)
- > La pluie (annuelle, mensuelle, journalière)

A partir des données de la pluviométrie journalière, nous allons étudier certaines caractéristiques de la saison des pluies, dont :

- Le nombre annuel de jour de pluie
- Le nombre mensuel de jour de pluie
- o Le nombre de jour de pluie pendant la saison des pluies
- Le début de la saison des pluies
- La fin de la saison des pluies
- La durée de la saison des pluies
- Les classes de hauteurs des pluies journalières (0-2mm, 2-10mm, 10-20mm,
 20mm et plus)

DEUXIEME PARTIE: PRESENTATION DE LA ZONE D'ETUDE ET SES
CARACTERISTIQUES CLIMATIQUES

I - PRESENTATION DE LA ZONE D'ETUDE

I.1 - Situation géographique

Le Burkina Faso est situé en Afrique occidentale, dans la boucle du Niger et s'étend sur une superficie de 274 200 km². La population est estimée à 12 millions d'habitants en 2000, dont 90% pratique l'agriculture.

Pays enclavé, le Burkina est limité au Nord et à l'Ouest par le Mali, au sud par la Côte d'Ivoire, le Ghana, le Togo, le Bénin et à l'Est par le Niger (figure n°1). Il se situe entre les latitudes 9°20' et 15°05' Nord et les longitudes 2°20' Est et 5°30' Ouest.

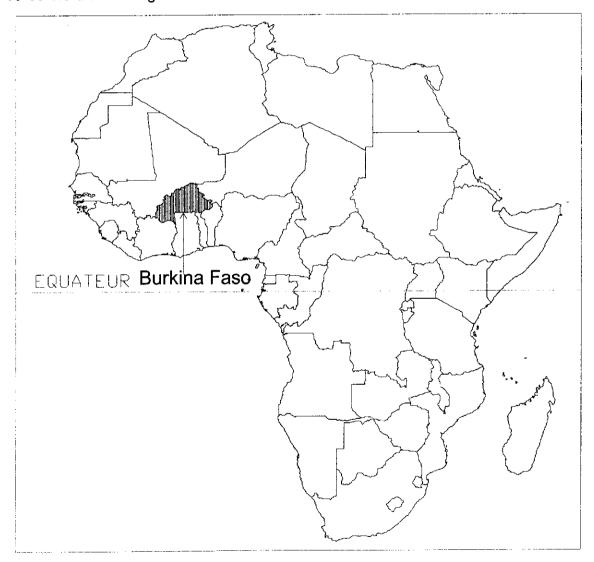


figure n° 1 : situation géographique du Burkina Faso

I -2 Cadre physique

I.2.1 - Relief et géologie

Le Burkina Faso présente dans l'ensemble un relief tabulaire. Les ¾ du pays sont constitués par une immense plaine appelée « plateau central », formé de roches cristallines et cristallophylliennes, résultats des différentes orogenèses qui se sont succédées depuis le précambrien.

L'ensemble du substratum est recouvert par endroits par des ensembles sédimentaires gréseux surtout localisés à l'Ouest du pays. Les plus hauts sommets sont situés dans cette partie : Mont Tenankrou (749 m), les Falaises de Banfora. A l'Est le massif gréseux est représenté par les falaises de Gobnangou.

1.2.2 - Le réseau hydrographique

Le réseau hydrographique est assez important dans la partie méridionale du pays. Les cours d'eau se rattachent à trois bassins principaux :

- c La Volta : Mouhoun, Nakambé et Nazinon
- La Comoé qui prend sa source dans les falaises de Banfora pour se jeter dans le Golfe de Guinée après avoir traversé la Côte D'Ivoire
- Le Niger: il est constitué par de petites rivières temporaires (Sirba, Tapoa) qui drainent
 l'Est et le Nord du pays.

Il faut noter que tous les cours d'eau du Burkina ne sont pas navigables du fait de leur caractère non pérenne. Il existe peu d'aménagements sur les grands cours d'eau, en revanche un nombre important de petits barrages agricoles sont construits sur les petits marigots.

II - CARACTERISTIQUES CLIMATIQUES

II.1 - Variation spatiale des paramètres

L'INSOLATION

L'insolation augmente du sud vers le nord durant toutes les saisons (figure n°9 et figure n°10).

> TEMPERATURE MAXIMALE

La température maximale augmente du sud vers le nord (figure n°13).

➤ LA TEMPERATURE MOYENNE

Trois périodes marquent la variation de la température journalière moyenne au cours de l'année :

- de Décembre à Février la température augmente du nord vers le sud (figure n°15).
- Les mois de Mars et Novembre sont des périodes de transition
- d'Avril à Octobre, la température augmente du sud vers le nord (figure n°16)

> TEMPERATURE MINIMALE

La variation spatiale de la température minimale est marquée par deux phases au cours de l'année.

- Une première phase, de Novembre à Mars, caractérisée par une augmentation de la température du Nord vers le Sud (figure n°18).
- Une deuxième phase d'Avril à Octobre où la température diminue du Nord vers le Sud (figure n°19).

> L'EVAPOTRANSPIRATION

L'évapotranspiration augmente du sud vers le nord (figure n°22).

> L'HUMIDITE

La variation de l'humidité d'une région à l'autre dépend des périodes de l'année.

Pendant la période de Décembre à Février, l'humidité augmente du sud vers le nord (figure n°25). Le gradient s'inverse entre Mars et Septembre (figure n°26).

> LA PLUVIOMETRIE

Les hauteurs de pluie annuelle et le nombre annuel de jours de pluie diminuent du Sud vers le Nord (figure n°28 et figure n°32)

II.2 - Mécanismes des saisons et définition de régions climatiques

Le climat du Burkina, de type soudano-sahélien, est déterminé par la confrontation de deux masses d'airs principales : Une masse d'air sèche du Nord-Est, l'HARMATTAN et une masse d'air humide provenant des hautes pressions océaniques de l'hémisphère Sud, la MOUSSON.

La zone de contact entre ces deux masses d'airs correspond au Front Intertropical (F.J.T). Il oscille au cours de l'année entre les parallèles 4°Nord (Golfe de Guinée) en janvier et 25°Nord (Sud sahara) en Août.

Ces oscillations du FIT sont responsables de l'alternance entre la saison sèche qui dure selon la latitude d'Octobre à Mai et la saison des pluies qui selon la latitude, s'étend de mi-Mai à mi-Octobre.

Ce mécanisme assez simple est cependant sujet à de fortes irrégularités et induit des variations régionales importantes. On distingue globalement trois zones climatiques au Burkina Faso (figure n°2) :

o La zone sud-soudanienne : une pluviométrie annuelle supérieure à 900 mm, une saison des pluies de 6 à 7 mois et des amplitudes thermiques modérées.

- La zone Nord-Soudanienne : la pluviométrie moyenne annuelle est comprise entre 600 mm
 et 900 mm. Dans cette zone, la saison des pluies s'étale sur 4 à 5 mois.
- La zone sahélienne: la pluviométrie est inférieure à 600 mm par an, avec de fortes irrégularités interannuelles. Elle se caractérise par une saison des pluies courte (3 à 4 mois), une forte évapotranspiration et des amplitudes thermiques journalières et saisonnières très fortes.

Zones climatiques Paramètres	Sud-soudanienne	Nord-soudanienne	Sahélienne	
Pluie annuelle	>900 mm	600-900 mm	<600 mm	
Durée de la saison des pluies (jours)	160-200	120-180	<120	
Nombre annuel de jours de pluie	80-100	50-85	<60	
Température journalière moyenne	Supérieure à 27°C	Supérieure à 28°C	Supérieure à 29°C	
Humidité de l'air :				
-Saison sèche	25%	23%	20%	
-Saison des pluies	85%	75%	70%	
ETP(mm)	1700-2000	1800-2200	1950-2500	
Insolation(h)	1400-3000	2000-3200	2500-3400	

tableau n° 1 : Caractéristiques climatiques des différentes régions

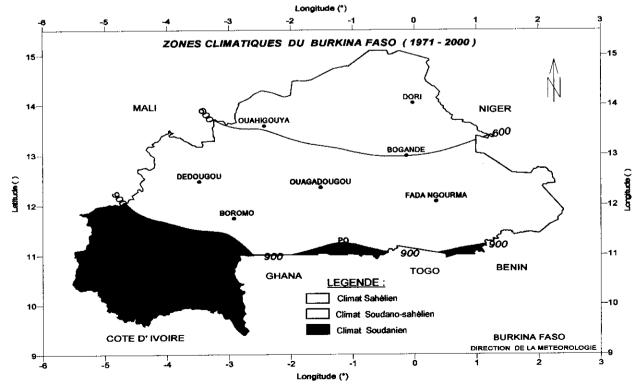


figure n° 2 : régions climatiques du Burkina Faso

II.3 - Facteurs pluviogènes

Le schéma de la figure n°3 montre les circulations saisonnières de deux masses d'air, l'HARMATTAN sec et la MOUSSON humide, et permet d'expliquer globalement la succession des saisons des pluies et sèches, dans toute l'Afrique de l'Ouest. Cependant il ne permet pas de décrire les variations tant spatiales que temporelles des pluies à une échelle locale. D'autres paramètres s'intègrent à cette dynamique globale pour ainsi expliquer ces irrégularités.

De façon générale, pour qu'il y ait précipitation, l'air humide doit pouvoir s'élever suffisamment haut pour se saturer en vapeur d'eau et permettre la formation de gouttes de pluie. La notion de FIT ne peut donc s'expliquer que par les précipitations observées au niveau de la structure ZIC où les ascendances sont importantes. Cela ne concerne donc qu'une bande étroite d'environ 200 km de largeur de part et d'autre de la position moyenne du F.I.T à 700 mb.

Les précipitations ayant cette origine sont appelées « pluies de mousson » ; elles sont abondantes et de longue durée.

Ces précipitations sont caractéristiques de la zone C2 (figure n°5). Le Burkina de part sa position géographique, ne connaît pas ce type de précipitations dans plus de 2/3 du pays, excepté les zones situées à l'extrême Sud.

De façon générale, dans les régions situées au Nord de 10°Nord, le flux de mousson n'est pas assez épais pour provoquer à lui seul d'importantes précipitations. Les précipitations sont alors liées au passage de perturbations tropicales dont l'origine est à rechercher principalement dans la circulation de moyenne (courant AEJ) et haute atmosphère (courant TEJ) (Arona et al, 1998).

En effet, dans la zone C1 (figure n°5) au niveau de la structure F.I.T, l'air humide est surmonté d'un courant d'Est qui bloque son ascendance. Il ne pourra donc avoir des précipitations que si des perturbations arrivent à modifier cette structure. C'est ce qui se passe lors des « tornades » et lignes de Grains.

MAHE (1992) montre qu'en Afrique subsaharienne au Nord de 10°Nord un déficit (resp. excédent) de pluie au sahel est lié à un A.E.J plus rapide (resp. lent) et à un T.E.J plus faible (resp. fort).

La diversité des milieux en Afrique de l'Ouest : la saison des pluies et la saison sèche

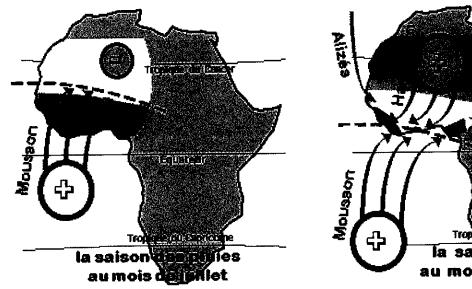


figure n° 3 : mécanismes climatiques en Afrique de l'Ouest

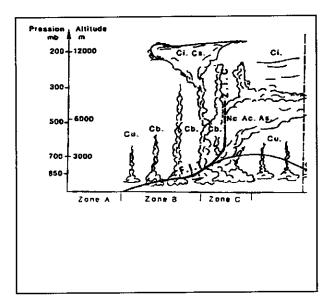
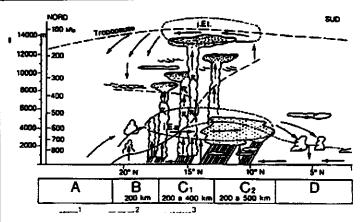



figure n° 4 : Structure schématique de l'atmosphère sur l'Afrique de l'ouest Pendant la saison des pluies

E,wei

31.11.6

1. Front Intertropical (FIT). 2. Limite inférieure de l'air équatorial d'altitude. 3. limite supérieure de la mousson. J.E.a, Jet d'Est africain (AEJ). J.E.t, Jet d'Est tropical (TRJ). Les principales zones de temps : A, zone sans pluie. B, zone avec des orages isolés. C1, zone où domine les « pluies de mousson ». D, zone avec des pluies réduites. Les flèches schématisent les flux et en particulier les mouvements de convection ou de subsidences de masse d'air.

figure n° 5 : Coupe schématique nord-sud en août de la troposphère au-dessus de l'Afrique vers le méridien origine.

ANALYSE DE LA VARIABILIT					
		•			
		•			
•					
÷					
		٠			
•				•	
TOOLOUTMED	A D.T.I.T				
TROISIEME PA	ARIIE: ME	HODES D	EIRAHEME	NI DES DOI	NNEES
·					

I - INTRODUCTION

Dans cette étude nous avons utilisé un ensemble de méthodes d'analyse statistique.

Pour la détermination de la nature de la série et des dates de rupture, nous avons travaillé avec des méthodes intégrées dans le logiciel Khronostat. Le logiciel ICCARE nous a surtout permis de déterminer d'autres séries de données à partir des données de pluies journalières.

Le calcul des indices de pluviosité et pluviométrique est fait afin de mettre en relief le déficit pluviométrique observé depuis quelques années.

Nous avons aussi utilisé la loi des fuites pour la détermination du nombre moyen d'événements et de la hauteur moyenne d'un événement. Ceci pour savoir le degré d'influence de chacun de ces paramètres sur la pluviométrie annuelle cumulée.

II - METHODES STATISTIQUES UTILISEES DANS LE LOGICIEL KRONOSTAT

Le logiciel KhronoStat a été élaboré dans le cadre d'une étude sur la variabilité climatique en Afrique de l'Ouest et Centrale non sahélienne et est oriente sur l'analyse de séries chronologiques.

La littérature consacrée à l'approche statistique de séries chronologiques de variables hydrométéorologiques est particulièrement abondante. Les tests disponibles sont extraits en grande partie de la note technique n°79 Climatic change de l'Organisation Mondiale de la Météorologie (WMO, 1966), et de Kendall et Stuart (1943).

Les premiers tests concernent le caractère aléatoire des séries.

Précisons d'abord ce qu'on entend par caractère aléatoire d'une série.

Soient x_i et x_{i+1} deux valeurs successivement prises par une variable aléatoire X. Nous dirons que la série chronologique des valeurs prises par X est aléatoire, si la probabilité pour que X prenne la valeur x_{i+1} est indépendante de la valeur précédente x_i .

Dans l'hypothèse où la série est déclarée non aléatoire, des tests sont requis pour tenter de caractériser la nature "non aléatoire" tels que les seconds tests qui sont relatifs à la détection d'un point de rupture a priori à date inconnue. Les tests les plus répandus portent sur la constance de la moyenne de la série tout au long de sa période d'observations.

Les tests sont en général assez puissants pour faire une distinction entre le caractère aléatoire et le caractère non aléatoire de la série. En revanche tous ne permettent pas d'identifier une alternative à la constance telle que tendance, discontinuité brutale, oscillations etc. Seuls quelques-uns sont relativement puissants vis à vis d'une alternative le plus souvent relevant d'un changement brutal.

Il faut rappeler que les tests non paramétriques ne font pas d'hypothèse sur la nature de la distribution de probabilité de la variable définissant la série des observations.

Les tests sont dits robustes lorsque leurs conditions d'application sont peu strictes.

Les différents tests intégrés dans le logiciel sont :

- Test de corrélation sur le rang de Kendall
- Autocorrélogramme
- Test de Mann-WHITNEY (PETTITT)
- Statistique U (BUISHANG)
- o Ellipse de contrôle
- Procédure Bayésienne de LEE et HEGHINIAN
- Procédure de segmentation de Hubert

Dans le cadre de notre étude, nous allons seulement utiliser trois tests, le test de corrélation sur le rang, le test de Mann-WHITNEY (PETTITT) et la procédure de segmentation de Hubert. Car l'étude est basée sur la caractérisation du comportement tendanciel et des dates de rupture des séries chronologiques des différents paramètres.

II.1 - Test de rang

BUT

C'est un test non paramétrique qui permet de déceler le caractère aléatoire ou non aléatoire d'une série ; en plus il recherche une tendance de la série.

PRINCIPE ET FORMULATION

L'hypothèse nulle signifie que la série est aléatoire.

Soit la série chronologique (xi), i=1, N, les xi désignent les réalisations de la variable X observées à des pas de temps successifs égaux.

L'hypothèse nulle à vérifier est : « la série des (xi), i=1, N, est aléatoire » .

On calcule le nombre de paires P pour lesquelles xj>xi, j>i, avec i = 1,....., N-1.

Pour N grand, sous l'hypothèse nulle, la variable $\,^{ au}$ telle que :

$$\tau = 1 - \frac{4Q}{N(N-1)} \quad \text{avec} \quad Q = \frac{N(N-1)}{2} - P$$

suit une distribution normale de moyenne nulle et de variance égale à

$$\sigma_{r}^{2} = \frac{2(2N+5)}{9N(N-1)}$$

Il en résulte que si l'hypothèse nulle est vraie, la variable $U = \tau / \sigma_r$ est une variable normale réduite.

Pour un risque α de première espèce donnée, la région d'acceptation de l'hypothèse nulle est comprise entre :

$$-U_{1-\alpha/2}\sigma_{r}$$
 et $U_{1-\alpha/2}\sigma_{r}$

L'hypothèse alternative de ce test est celle d'une tendance.

II.2 - Test de Pettitt

BUT

Le test de PETTITT permet de déterminer si la série appartient à la même population ou si, au contraire, elle se décompose en deux populations (on parlera alors de rupture); dans le cas où la rupture est détectée, il permet de localiser sa date.

PRINCIPE

Une rupture peut être définie de façon générale par un changement dans la loi de probabilité de la série chronologique à un instant donné, inconnu.

La série étudiée est divisée en deux sous-échantillons respectivement de taille m et n.

Les valeurs des deux échantillons sont regroupées et classées par ordre croissant. On calcule alors la somme des rangs des éléments de chaque sous-échantillon dans l'échantillon total. Une statistique est définie à partir des deux sommes ainsi déterminées, et testée sous l'hypothèse nulle d'appartenance des deux sous-échantillons à la même population. C'est le test de Mann-Whitney.

FORMULATION

Ce test a été modifié par Pettitt (Pettitt, 1979) :

Soit la série chronologique (x_i) , i=1, N, les x_i désignent les réalisations de la variable X observées à des pas de temps successifs égaux.

L'hypothèse nulle du test est l'absence de rupture dans la série.

Soit Dij = sgn(xi-xj) avec sgn(x) = 1 si x>0, 0 si x = 0, -1 si x<0.

On considère la variable Ut, N telle que :

$$U_{t,N} = \sum_{i=1}^{t} \sum_{j=t+1}^{N} D_{ij}$$

Soit K_N la variable définie par le maximum en valeur absolue de U_{t, N} pour t variant de 1 à N-1.

Si k désigne la valeur de K_N prise sur la série étudiée, sous l'hypothèse nulle, la probabilité de dépassement de la valeur k est donnée approximativement par :

$$\Pr{ob(K_N > k)} \approx 2 \exp(-6 k^2 / (N^3 + N^2))$$

Pour un risque α de première espèce donné, si $\Pr{ob(K_N > k)}$ est inférieur à α , l'hypothèse nulle est rejetée.

Ce test est réputé pour sa robustesse.

II.3 - Segmentation de Hubert

BUT

A la différence du test de PETTITT, le test de HUBERT peut détecter plusieurs dates de rupture dans une série chronologique. Seulement il ne peut être utilisé que dans le cas d'une série qui ne présente aucune lacune.

PRINCIPE

Le principe de cette procédure est de "découper" la série en m segments (m>1) de telle sorte que la moyenne calculée sur tout segment soit significativement différente de la moyenne du (ou des) segment(s) voisin(s). Une telle méthode est appropriée à la recherche de multiples changements de moyenne.

FORMULATION

La segmentation est définie de la façon suivante.

Toute série xi, $i = i_1$, i_2 avec $i_1 \ge 1$ et $i_2 \le N$ où $(i_1 < i_2)$ constitue un segment de la série initiale des (xi), i = 1,....N.

Toute partition de la série initiale en m segments est une segmentation d'ordre m de cette série.

A partir d'une segmentation particulière d'ordre m pratiquée sur la série initiale, on définit :

$$i_k$$
, $k = 1, 2,...., m$;
 $n_k = i_{k-1},...$

$$\bar{\chi}_k$$
 la moyenne du k^{ièmé} segment, $\bar{\chi}_k = \frac{\sum_{i=j_{k-1}+1}^{i=ik} \chi_i}{n_k}$;

$$Dm = \sum_{k=1}^{k=m} d_k \text{ avec. } d_k = \sum_{i=i_{k-1}+1}^{i=i_k} \left(x_i - x_k^{-1} \right)^2$$

La segmentation retenue doit être telle que pour un ordre m de segmentation donné, l'écart quadratique Dm soit minimum. Cette condition est nécessaire mais non suffisante pour la détermination de la segmentation optimale. Il faut lui adjoindre la contrainte suivante selon laquelle les moyennes de deux segments contigus doivent être significativement différentes. Cette contrainte est satisfaite par application du test de Scheffé (Dagnélie, 1970).

D'après les auteurs (Hubert et al., 1989), cette procédure de segmentation peut être interprétée comme un test de stationnarité, "la série étudiée est stationnaire" constituant l'hypothèse nulle de ce test. Si la procédure ne produit pas de segmentation acceptable d'ordre supérieur ou égal à 2, l'hypothèse nulle est acceptée. Aucun niveau de signification n'est attribué à ce test.

III - PRESENTATION DU LOGICIEL ICCARE

Il regroupe plusieurs méthodes de traitement permettant de constituer des séries chronologiques de données de type météorologique, à partir d'observations sur un ensemble de stations (pluies par ex).

Ces séries peuvent être étudiées sur des pas de temps paramétrables appelés périodes, de façon à visualiser l'évolution de variables dans le temps.

Pour certaines variables (pluie et débit), les données brutes (journalières) peuvent permettre d'étudier d'autres caractéristiques particulières dont l'évolution mérite d'être suivie (par exemple les caractéristiques des saisons des pluies).

Des outils de mise en forme des fichiers sont disponibles, pour simplifier le travail de l'utilisateur.

Parmi les méthodes de constitutions de séries chronologiques disponibles, nous avons utilisé celles qui concernent la définition des saisons des pluies. Deux méthodes peuvent nous permettre de détecter le début et la fin des saisons des pluies.

III.1 - Méthode utilisée par l'INRA

PRINCIPE

Le début des pluies est atteint quand au moins 20 mm de pluie sont recueillis en 3 jours consécutifs à partir du 1er avril sans période sèche supérieure à 7 jours dans les 30 jours qui suivent.

La fin des pluies intervient lorsque, après le 1er septembre, il n'y a plus de pluie supérieure à 5 mm (pluie unitaire ou cumul) pendant au moins 20 jours successifs.

PARAMETRES

Cette méthode nécessite des données journalières.

En l'absence d'autre indication dans la bibliographie, une période sèche correspond à une pluie nulle et un jour de pluie à une pluie non nulle. Il est possible de modifier ces seuils pour tenir compte d'un éventuel effet de rosée.

On n'autorise pas une seule journée de lacune.

Cette méthode ne convient que pour les zones à une saison des pluies.

III.2 - Méthode graphique

PRINCIPE

Cette méthode utilise des données journalières, mais peut facilement être adaptée à des données décadaires.

Elle consiste pour une année donnée au niveau d'une station, d'ajuster une courbe mathématique aux données de pluies journalières cumulées. L'ajustement se fait par la méthode du pivot maximum de Gauss-Jordan. Cette courbe est par défaut un polynôme de degré 3 mais différentes options peuvent être étudiées.

PARAMETRES

Sur l'axe des X on a les jours de l'année, sur l'axe des Y les pluies cumulées.

Pour l'ajustement ainsi défini, on détermine la tangente au point d'inflexion de la courbe, et on déduit naturellement les dates de début et de fin de la saison par l'intersection avec les droites d'équation Y = 0 et Y = Ymax.

Les débuts et fin de saison peuvent être définis par l'intersection de la tangente avec les droites d'équation $Y = 0,1^*$ Ymax et $Y = 0.9^*$ Ymax.

Il est possible d'imposer des contraintes de pente nulle en début et fin d'ajustement, mais d'après les essais cela n'a pas d'influence notable sur les caractéristiques de la saison.

La méthode n'autorise pas une seule journée de lacune.

figure n° 6 : Exemple d'application du principe de la méthode

IV - INDICES DE SECHERESSE

Pour caractériser et identifier la sécheresse, plusieurs calculs d'indice sont possibles.

Ces indices permettre surtout la connaissance d'une succession d'années déficitaires ou excédentaire.

IV.1 - Indice de l'écart à la moyenne (Em)

C'est l'indice le plus utilisé pour estimer le déficit pluviométrique à l'échelle de l'année. Les agrométéorologues utilisent plutôt l'écart à la médiane. Bien évidemment, quand l'échantillon de données est dissymétrique, la différence entre la moyenne et la médiane est grande. L'écart à la moyenne est la différence entre la hauteur de précipitation annuelle (P_i) et la hauteur moyenne annuelle de précipitation (P_m).

$$\mathsf{E}_{\mathsf{m}\mathsf{i}} = \mathsf{P}_\mathsf{i} - \mathsf{P}_\mathsf{m} \tag{I}$$

On parle d'année déficitaire quand la pluie est inférieure à la moyenne (indice négatif) et d'année excédentaire quand la moyenne est dépassée (indice positif). Cet indice permet de visualiser et de déterminer le nombre d'années déficitaires et leur succession.

IV.2 - Indice de pluviosité (Ipi)

C'est le rapport de la hauteur de précipitation annuelle à la hauteur moyenne annuelle de précipitations.

$$I_{pj} = P_j / P_m \tag{II}$$

Une année est qualifiée d'humide si ce rapport est supérieur à 1 et de sèche s'il est inférieur à 1. Pour situer une pluviométrie dans une longue série de relevés pluviométriques, on utilise l'écart proportionnel à la moyenne (I_{pm}) qui diffère de la pluviosité en soustrayant 1 de cet indice.

$$I_{\text{pmi}} = I_{\text{pi}} - 1 \tag{III}$$

Le cumul des indices d'années successives permet de dégager les grandes tendances en faisant abstraction des faibles fluctuations d'une année à l'autre. Quand la somme des indices croît, il s'agit d'une tendance humide. La tendance est de type « sèche », dans le cas contraire.

C'est ce cumul que nous allons utiliser pour faire des représentations graphiques, les autres indices servirons de calculs intermédiaires.

IV.3 - Indice de pluviométrie

L'étude des fluctuations pluviométriques en Afrique de l'Ouest et centrale est souvent basée sur des indices pluviométriques comme celui utilisé par Nicholson (1979) et Lamb (1983). Cet indice mesure un écart par rapport à une moyenne établie sur une longue période.

L'écart centré calculé est réduit pour minimiser les variations internes des séries. Cet indice permet de distinguer les années sèches des années humides.

$$I_{pi} = \frac{P_i - P_m}{S}$$
 où S est l'écart type de la série.

f v - LA LOI DES FUITES

V.1 - Introduction

C'est une loi qui a été utilisée et validée pour décrire les régimes pluviométriques mensuels au Bénin, au Niger et au Burkina Faso (Tapsoba. D, 1997). Les paramètres de cette loi permettent la description du régime pluviométrique à partir d'un modèle (AnnexelV). Ces paramètres sont le nombre moyen d'événements (λ) et la hauteur moyenne d'un événement (μ). On entend par événement, la pluie.

Nous allons utiliser cette loi pour déterminer les deux paramètres avant et après l'année 1970. L'évolution de chacun de ces paramètres nous permettra de saisir l'influence du nombre moyen d'événements et de la hauteur moyenne d'un événement sur la pluviométrie enregistrée au niveau des différentes stations de mesure.

V.2 - Estimation des paramètres

Le modèle est calé sur les chroniques de relevés quotidiens, seule information au plus petit pas de temps disponible sur l'ensemble de la zone d'étude.

Les observations seront considérées comme parfaites, c'est à dire qu'elles sont sans lacunes et faites toujours aux même heures. Mais en réalité elles ne le sont pas car les jours de faibles pluies sont en général mal observés.

V.3 – Principes généraux

L'estimation des paramètres correspondant à un jour donné se fait par voisinage glissant sur une fenêtre de Nf jours. Les chroniques sont longues de Na années. Le nombre, Nobs, d'observations disponibles est égal au produit de Na par Nf. Il s'agit donc de Na séquences indépendantes de Nf relevés, qui ne sont indépendantes qu'au delà de deux jours. Dans notre étude Nf a été choisi égal à 11 jours.

Ne pouvant exprimer analytiquement les distributions des hauteurs journalières, nous chercherons un estimateur de λ , λ ', à partir de l'analyse de la variable « jour de pluie ».

L'estimateur μ ' de μ est donné par la relation μ '=C/ λ ' où C est la moyenne expérimentale des relevés du jour.

= 23

V.4 - Formulation

La hauteur moyenne par événement est un facteur d'échelle. La qualité des estimations des deux paramètres dépend essentiellement de celle du nombre moyen d'événements par jour. L'estimation des paramètres se ramène donc à celle de λ .

Les distributions des durées d'évènements sont bornées. Sur l'ensemble du Burkina on peut admettre qu'elles sont toujours inférieures à la journée. Par ailleurs les séquences de jours secs et pluvieux sont assimilables à une chaîne de Markov d'ordre 1, définies par les probabilités suivantes:

Pro(0)=Exp(
$$-\lambda$$
.(1+ Δ))

$$Pro(1||0)=1-Exp(-\lambda)$$

$$Pro(0|1) = \frac{Exp(-\lambda.(2+\Delta)) - Exp(-\lambda.(1+\Delta))}{1 - Exp(-\lambda.(1+\Delta))}$$

Où

Pro(0)=probabilité qu'un jour soit sec

Pro(1 0) = probabilité qu'un jour soit pluvieux sachant que le précédent est sec

Pro(0| 1)= probabilité qu'un jour soit sec sachant que le précédent est pluvieux

Δ= Espérance de la durée des évènements

Pour Δ deux cas sont à considérer : celui où l'espérance des durées d'averses est connue et celui où elle ne l'est pas.

Les analyses des séries pluviométriques existantes en Afrique de l'Ouest (Le Barbé, 1982; Bouvier, 1986 ; N'Doye, 1988) montrent que, la durée moyenne des averses varie très peu sur des zones géographiques importantes. Les valeurs trouvées pour Bamako, Niamey et Ouagadougou sont toutes comprises entre 56 et 60 minutes.

Les estimateurs sont alors :

 \overline{h} = Hauteur moyenne, et Nobs= Taille de l'échantillon des observations.

Ils sont sans biais. Les caractéristiques asymptotiques de leurs distributions sont données dans le tableau suivant

Variance $\left(\hat{\lambda}\right)$	$\frac{1}{Nobs.(1+\Delta)^2}.(Exp(\lambda.(1+\Delta)-1+2.\frac{Nf-1}{Nf}.(Exp(\lambda.\Delta)-1))$
Variance $(\hat{\mu})$	$\frac{\mu^2}{\lambda^2.Nobs.(1+\Delta)^2}.(\exp(\lambda.(1+\Delta)-1+2.\frac{Nf-1}{Nf}.(Exp(\lambda.\Delta)-1))$
Covariance $(\hat{\lambda}_{,\hat{\mu}})$	$\frac{\mu}{Nobs} \left(1 - \frac{1}{\lambda . (1 + \Delta)^2} . (Exp(\lambda . (1 + \Delta) - 1 + 2 . \frac{Nf - 1}{Nf} . (Exp(\lambda . \Delta) - 1)) \right)$
Coefficient de corrélation $R(\hat{\lambda}_{,}\hat{\mu}_{})$	$\frac{\lambda.(1+\Delta)^2}{(Exp(\lambda.(1+\Delta)-1+2.\frac{Nf-1}{Nf}.(Exp(\lambda.\Delta)-1))}-1$

tableau n° 2 : caractéristiques asymptotiques des deux distributions du modèle pour ∆ connue

V.4.2 - CAS 2 : △ Inconnue

Les estimateurs sont les suivants :

$$\begin{cases}
\hat{\lambda} = LN \begin{pmatrix} \overline{N} o \\ \overline{N} o o \end{pmatrix} \\
\hat{\Delta} = LN \begin{pmatrix} \overline{N} o \\ \overline{N} o \end{pmatrix} \\
\hat{\mu} = \frac{\overline{h}}{\hat{\lambda}}
\end{cases}$$

avec \overline{No} = Nombre de jours secs observés

 \overline{N} oo = Nombre de séquences de 2 jours secs observés.

Les caractéristiques asymptotiques sont indiquées dans le tableau

	ridaes sont maidaces dans le tableau
Variance $(\hat{\lambda})$	$\frac{(Exp(\lambda)-1)}{Nobs} \left(Exp(\lambda(1+\Delta)) 2. \frac{Nf-1}{Nf}. Exp(Exp(\lambda.\Delta)-1) \right)$
Variance $(\hat{\mu})$	$\frac{(Exp(\lambda)-1). \mu^{2}}{Nobs. \lambda^{2}} \left(Exp(\lambda(1+\Delta)) 2. \frac{Nf-1}{Nf}. (Exp(\lambda.\Delta)-1) \right)$
Covariance $(\hat{\lambda}_{,\mu})$	$\frac{\mu}{Nobs} \left(1 - \frac{Exp(\lambda) - 1}{\lambda} . (Exp(\lambda.(1 + \Delta) - 1 - 2.\frac{Nf - 1}{Nf}.(Exp(\lambda.\Delta) - 1))) \right)$
Coefficient de corrélation $R(\hat{\lambda}_{,}\hat{\mu}_{})$	$\frac{\lambda}{Exp(\lambda.(1+\Delta)+2.\frac{Nf-1}{Nf}.(\exp(\lambda.\Delta)-1))}-1$

tableau n° 3 : caractéristiques asymptotiques des deux estimateurs du modèle pour ∆ connue

QUATRIEME PARTIE: STATIONS DE MESURE DES PARAMETRES
CLIMATIQUES ET CONSTITUTIONS DES SERIES DE DONNEES

I - LOCALISATION DES STATIONS DE MESURE DES PARAMETRES CLIMATIQUES

1.1 - Choix des stations

Avant d'envisager l'étude des séries de données et notamment l'application des tests, il s'avère nécessaire comme dans toute étude de ce genre de définir une période et des stations de référence à partir desquelles les différentes investigations s'articuleront.

Le choix des stations de référence ainsi que celui d'une période d'étude répond en fait à une exigence fondamentale qui est celle de disposer d'une base de donnée fiable, c'est à dire présentant un certain nombre de qualités nécessaires pour garantir un meilleur traitement.

La qualité des données signifie :

- o Leur continuité, qui implique l'absence ou un nombre réduit de lacunes
- Leur homogénéité spatiale qui suppose leurs observations à plusieurs postes bien répartis sur l'ensemble de l'espace couvert par l'étude.

Pour cette étude, nous avons travaillé avec les données issues des mesures effectuées au niveau des seules stations synoptiques par le service de la Météorologie Nationale du Burkina Faso. Ce choix se justifie d'autant plus, qu'au niveau de ces stations nous avons une mesure de tous les paramètres climatiques choisis dans notre étude

1.2 Situation géographique des stations de mesure

CODE	COORDONNEES				
AGRHYMET	NOM DE LA STATION	Latitude	Longitude	Altitude	
200001	OUAGADOUGOU AERO	12°21 N	01°02 W	304	
200026	DORI	14°02 N	00°02 W	288	
200035	OUAHIGOUYA	13°35 N	02°26 W	329	
200054	DEDOUGOU	12°28 N	03°29 W	308	
200085	BOGANDE	12°59 N	00°08 W	250	
200089	FADA N'GOURMA	12°04 N	00°22 E	308	
200099	BOBO DIOULASSO	11°10 N	04°18 W	459	
200107	ВОКОМО	11°44 N	02°55 W	270,	
200114	PO	11°10 N	01°09 W	326	
200140	GAOUA	10°20 N	03°11 W	333	

tableau n° 4 : Coordonnées géographiques des stations synoptiques

Ces stations sont représentées sur la figure n°7.

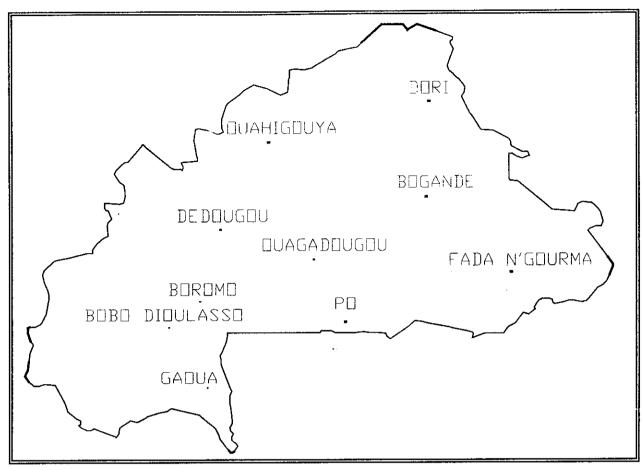


figure n° 7 : situation géographique des stations de mesure

II -PARAMETRES MESURES AU NIVEAU DES STATIONS SYNOPTIQUES

Dans les stations synoptiques, les mesures sont faites normalement toutes les heures. Les paramètres mesurés sont :

- La température sous abri(minimale, maximale et instantanée)
- La température au sol (minimale et maximale)
- La température de l'eau du bac A
- o La température dans le sol (10, 20, 50, 100 cm)
- Evaporation (piche, bac A)
- o Insolation
- o Humidité (minimale, maximale)
- o Pluviométrie
- Rayonnement solaire
- Nébulosité
- Vent (direction et force)
- Visibilité horizontale
- o Pression

o Temps présent

D'autres paramètres sont déduits de ceux observés, tels que, la tension de vapeur, l'évapotranspiration, etc.

III - CONSTITUTION DES SERIES CHRONOLOGI-QUES DE DONNEES

Ces données ont été préalablement critiquées par l'équipe IRD. Nous avons cherché à localiser les lacunes pouvant exister dans ces chroniques de données.

III.1 - Séries de données d'insolation

STATIONS	Début (année)	Fin (année)	Longueur (ans)	Lacune (%)
DORI	1950	1997	48	2,10
OUAHIGOUYA	1950	1997	48	2,10
BOGANDE				
DEDOUGOU	1950	1997	48	6,25
OUAGADOUGOU AERO	1950	1997	48	2,10
FADA N'GOURMA	1950	1997	48	2,10
вогомо	1950	1997	48	2,10
BOBO-DIOULASSO	1950	1997	48	2,10
PO	1982	1996	15	2,10
GAOUA	1950	1997	48	2,10

tableau n° 5 : séries chronologiques d'insolation

III.2 - Séries de données de température

STATIONS	Début	Fin (annéa)	Longueur	Lacune(%)	
	(année)	Fin (année)	(ans)	SL	SC
DORI	1925	1997	73	15,07	2,08
OUAHIGOUYA	1932	1997	66	4,55	2,08
BOGANDE					
DEDOUGOU	1957	1997	41	2,44	2,08
OUAGADOUGOU AERO	1940	1997	58	1,72	2,08
FADA N'GOURMA	1932	1997	66	6,06	2,08
BOROMO	1923	1997	79	1,27	2,08
BOBO-DIOULASSO	1907	1997	90	11,11	2,08
PO	1979	1997	19	0,00	0,00
GAOUA	1908	1997	90	1,11	2,08

SL : Série Longue (totalité des données de la série)

SC : Série Courte (ensemble des données de 1950 à la dernière année)

tableau n° 6 : séries chronologiques de température

III.3 - Séries de données d'évapotranspiration

Il faut noter que nous étudions l'ETP de Penman.

STATIONS	Début (année)	Fin (année)	Longueur (ans)	Lacune(%)
DORI	1961	1990	30	0
OUAHIGOUYA	1961	1990	30	0
BOGANDE			_	_
DEDOUGOU	1961	1990	30	10
OUAGADOUGOU AERO	1961	1990	30	0
FADA N'GOURMA	1961	1990	30	0
BOROMO	1961	1990	30	0
BOBO- DIOULASSO	1961	1990	30	0
PO	1984	1990	8	
GAOUA	1961	1990	30	0

tableau n° 7 : séries chronologiques d'ETP

III.4 - Séries de données d'humidité

STATIONS	Date du	Date de	Longueur	Lacune(%)	
STATIONS	début	la fin	de la série		
DORI	1961	1997	37	0,68	
OUAHIGOUYA	1964	1997	38	0,66	
BOGANDE					
DEDOUGOU	1982	1997	16	0,00	
OUAGADOUGOU AERO	1961	1997	37	0,68	
FADA N'GOURMA	1960	1997	38	0,88	
вогомо	1961	1997	37	0,68	
BOBO- DIOULASSO	1961	1997	37	0,68	
PO	1983	1997	15	0,00	
GAOUA	1961	1997	37	0,45	

tableau n° 8: séries chronologiques d'humidité

III.5 -Séries de données de la pluviométrie

STATIONS	Date du	Date de la	Longueur	Lacune(%)		
	début	fin	de la série	SL	sc	
DORI	1921	2001	81	0,51	0	
OUAHIGOUYA	1922	2001	80	0,00	0	
BOGANDE	1948	2001	54	1,85	0	
DEDOUGOU	1922	2001	80	1,25	0	
OUAGADOUGOU AERO	1952	2001	50	0,17	0	
FADA N'GOURMA	1922	2001	80	2,50	0,0014	
BOROMO	1923	2001	79	1,05	0	
BOBO- DIOULASSO	1907	2001	95	7,37	0	
РО	1942	2001	60	0,00	. 0	
GAOUA	1908	2001	94	10,64	0	

tableau n° 9: séries chronologiques de pluviométrie

CINQUIEME PARTIE: TRAITEMENT ET ANALYSE DES SERIES DE DONNEES

I - METHODOLOGIE

La période de rupture est déterminée à partir des résultats issus des tests de Pettitt et de Hubert. Dans le cas où la série chronologique débute avant 1950, les dates de rupture sont déterminées pour la série longue (totalité des données disponibles) et la série courte (depuis 1950).

Pour un paramètre donné, un histogramme des occurrences de ruptures est déterminé en regroupant les résultats des tests de rupture sur les séries de l'ensemble des stations. Dans ce travail, nous ne considérons que les ruptures apparues après 1950. Les résultats de la série longue servent à vérifier s'il n'y a pas une influence de la taille de l'échantillon sur les dates de rupture obtenues à partir de la série courte.

Le test de rang nous donne le type de tendance dans le cas où la série est déclarée non aléatoire. L'évolution des différents paramètres est représentée par des graphiques. Les courbes ont été tracées à partir des moyennes quinquennales. Nous avons représenté dans ce rapport, les séries de trois stations représentant chacune une région climatique, Dori pour la région sahélienne, Ouagadougou (Ouaga) pour la région Nord soudanienne et Bobo Dioulasso (Bobo) pour la région Sud soudanienne. Mais les analyses qui sont faites tiennent compte des caractéristiques des autres stations concernées par l'étude.

Des représentations graphiques sont faites pour les indices et les différents paramètres de la loi des fuites afin de mieux appréhender leur évolution.

II - RAPPEL DES RESULTATS OBTENUS (étude 2001)

Notre étude fait suite à un travail effectué l'année passée sur des séries de données annuelles de paramètres climatiques. L'étude de l'année passée était effectuée sur des données des stations synoptiques (10), stations agroclimatologiques (11), stations climatologiques (12), et stations pluviométriques (128) (Koukponou A 2001).

Seulement nous avons élargi l'étude en ajoutant d'autres paramètres climatiques et même, dans certains cas, en intégrant des mises à jour de données.

II.1 - Insolation

L'analyse des résultats obtenus à partir du traitement de 11 stations de mesure montre qu'il y a deux périodes de ruptures : 1965 à 1968 et 1977 à 1981.

Les ruptures de 1965 à 1968 ont une tendance à la hausse mais celle de 1977 à 1981 ont une tendance à la baisse.

L'étude des séries d'insolation montre une augmentation de l'insolation des années 1950 à 1980. Mais les années 1980 la tendance s'est inversée pour la majorité des stations. II.2 - Température

Le maximum de ruptures résultant du traitement des séries de température moyenne,

minimale et maximale de onze stations, s'est produit dans la période de 1976 à 1982.

La tendance générale est à la hausse pour la température maximale, moyenne et minimale et les

résultats les plus nets affectent la température minimale.

II.3 - Evapotranspiration

Les périodes de rupture les plus marquées sont entre 1961 et 1967 et entre 1978 et 1980.

D'une façon générale, l'évapotranspiration a baissé de 1967 à nos jours.

II.4 - Humidité

Les ruptures sont plus marquées dans les séries d'humidité minimale que dans les séries

d'humidité maximale. De façon générale, les ruptures sont plus fréquentes au cours de deux

périodes: 1969 à 1972 et 1978 à 1980.

Dans l'ensemble, la tendance des séries d'humidité est à la baisse.

II.5 - Pluviométrie annuelle

Le résultat de l'étude des séries de 47 stations montre que le maximum de ruptures s'est

produit entre 1965 et 1970.

La pluviométrie évolue à la baisse au cours de trente dernières années avec des déficits plus cu

moins accentués.

II.6 - Pluviométrie mensuelle

Elle suit la même évolution que la pluie annuelle, seulement le phénomène est plus marqué

pendant la saison pluvieuse.

II.7 - Nombre annuel de jours de pluie

La période de rupture la plus marquée est de 1975 à 1979.

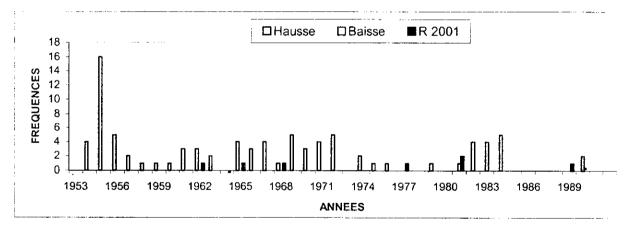
Le nombre de jours de pluie a baissé pour l'ensemble des stations. Cependant nous assistons à

une évolution à la hausse au cours de cette dernière décennie.

34

III - EVOLUTION DES DIFFERENTS PARAMETRES

III.1 - Insolation


≭ DATES DE RUPTURE

La figure n°8 présente les résultats obtenus sur les séries courtes (depuis 1950) des données mensuelles avec leur tendance et les résultats des données annuelles (R2001). Elle montre qu'il y a quatre grandes périodes de ruptures, 1954-1957, 1960-1963, 1965-1972 et 1982-1984. Ce sont des périodes au cours desquelles on a détecté un changement dans les séries de données.

Les trois premières périodes de ruptures correspondent à hausse mais la dernière période de 1982 à 1984 correspond à une baisse.

A part la station de Po qui ne présente de ruptures qu'en 1990, toutes les autres stations ont eu des ruptures au cours de ces trois premières périodes. Les ruptures de 1982 à 1984, ont surtout apparu sur les séries chronologiques des stations de Fada N'gourma, Boromo et Bobo Dioulasso (Annexe II.1).

Tous les mois sont touchés et le mois le moins affecté est le mois d'Avril, qui ne présente qu'une seule année de rupture, 1955, à la station de Ouagadougou (Annexe II.1).

R 2001 :résultats de l'étude 2001

figure n° 8: Histogramme des dates de rupture dans les séries chronologiques mensuelles et annuelles d'insolation pour l'ensemble des stations

× EVOLUTION

Au niveau de l'ensemble des stations, l'insolation a augmenté des années 1950 à aujourd'hui (figure n°8). Mais on constate certaines fluctuations intermédiaires :

- des années 1950 à 1983, l'évolution est à la hausse
- de 1983 à aujourd'hui, une légère tendance à la baisse

L'évolution de l'insolation (figure n°9) se fait de façon uniforme sur tout le pays, ce qui fait que nous n'avons pas constaté un décalage des dates de rupture d'une région à l'autre.

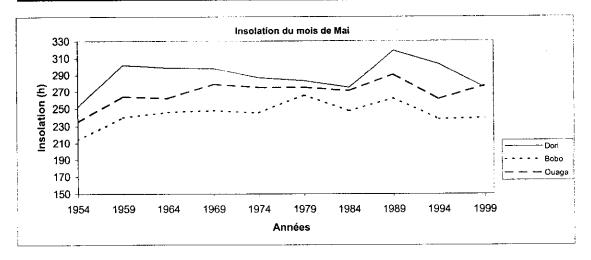


figure n° 9:Variation de l'insolation au mois de Mai

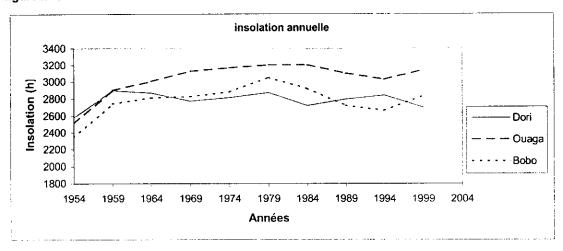


figure n° 10: Variation de l'insolation annuelle

III.2 - Température

III.2.1 - Température maximale

X DATES DE RUPTURE

L'histogramme des dates de rupture (figure n°11) nous donnent trois périodes de foce fréquence :

- de 1957 à 1964
- de 1967 à 1971
- - 1973 à 1982.

Ces périodes de ruptures varient d'une région à l'autre (Annexe II.2). Ainsi les ruptures au cours de la période de 1967 à 1971 apparaissent plus au Nord (Dori et Ouahigouya) pendant la saison pluvieuse. Quant aux deux autres régions (centre, Sud), les ruptures de 1973 à 1982 sont les plus importantes et apparaissent de plus pendant la saison des pluies (Annexe II.2).

Pour la saison sèche, le phénomène est plus accentué sur l'ensemble du pays pendant la période de 1973 à 1982. De même les ruptures de 1957 à 1964 sont plus abondantes pendant la saison sèche.

Dans l'ensemble nous constatons que les ruptures sont à la baisse pendant la saison sèche et à la hausse pour la saison des pluies.

Le mois de Mars est le moins touché par le changement, il n'a qu'une seule rupture en 1959. Le changement de la température maximale est plus ressenti au Nord qu'au sud.

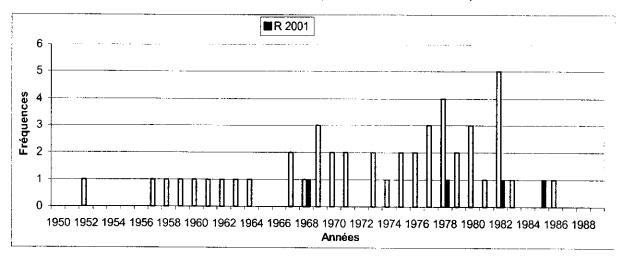


figure n° 11: Histogramme des années de rupture dans les séries chronologiques mensuelles et annuelles de la température maximale pour l'ensemble des stations

× EVOLUTION

La variation de la température maximale dépend des saisons.

Pour les mois de Décembre à Mars, la tendance était à la baisse des années 1950 aux années 1984 (figure n°12) mais depuis ces années jusqu'à aujourd'hui, l'évolution est à la hausse.

De Mai à Novembre, la tendance générale est à la hausse des années 1950 aux années 1984 (figure n°13) mais cette tendance s'est inversée depuis. Cette augmentation de température est surtout nette au mois d'Août, où on enregistre une hausse de 1°C par rapport aux années 1970.

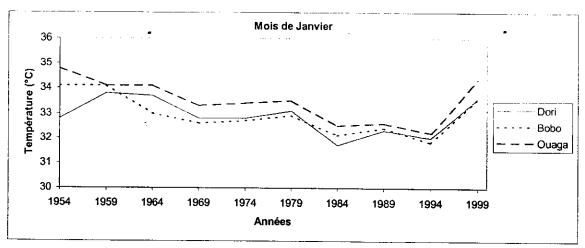


figure n° 12: Variation de la température maximale au mois de Janvier

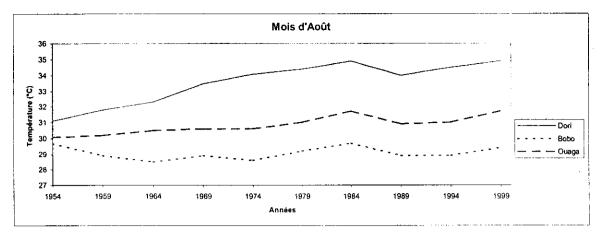


figure n° 13:Variation de la température maximale au mois d'Août

III.2.2 – Température moyenne

X DATES DE RUPTURE

Les périodes de plus fortes ruptures (figure n°14) sont, de 1967 à 1971 et de 1976 à 1982.

Les ruptures des séries de température moyenne dépendent des régions (Annexe II.3). Au Nord (Dori, Ouahigouya) les ruptures au cours de la période de 1967 à 1971 sont plus nombreuses. Mais au Centre et au Sud, ce sont les ruptures de 1976 à 1982 qui dominent.

Ces ruptures de 1967 à 1971 et de 1976 à 1982 ; sont plus accentuées pendant la saison des pluies dans les différentes régions, respectivement au Nord et dans les autres régions (centre. Sud).

Dans le Nord, toutes les ruptures ont une tendance à la hausse. Aussi au Sud et au Centre, les ruptures de 1967 à 1971, apparues pendant la saison des pluies, ont une tendance à la hausse.

Nous constatons que la période de Décembre à Février est moins affectée par ce changement. aussi la série de la station de Po n'a présenté aucune année de rupture (Annexe II.3).

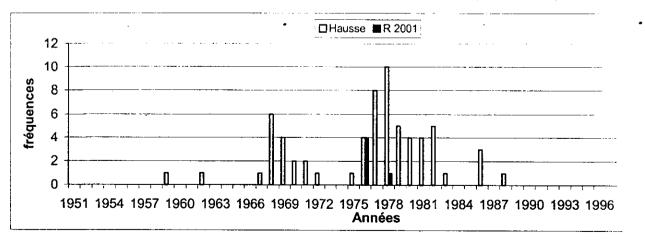


figure n° 14: Histogramme des années de rupture dans les séries chronologiques mensuelles de la température moyenne pour l'ensemble des stations

× EVOLUTION

La température moyenne a augmenté des années 1950 aux années 1984 mais depuis on nous constatons une légère tendance à la baisse, sur l'ensemble du territoire Burkinabé (figure n°15). Le gradient Nord-Sud augmente aussi des années 1950 à nos jours (figure n°16), cette augmentation est surtout accentuée pendant la saison des pluies.

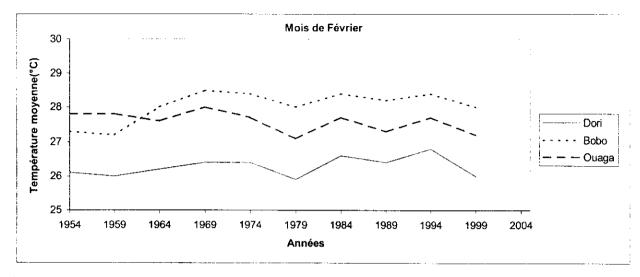


figure n° 15: Variation de le température moyenne au mois de Février

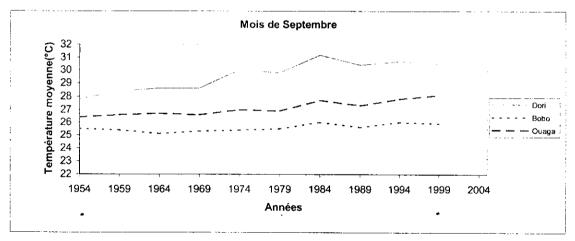


figure n° 16: Variation de la température moyenne au mois de Septembre

III.2.3 - Température minimale

X DATES DE RUPTURE

L'évolution de la température minimale est marquée par trois périodes de ruptures (figure n°17), de 1966 à 1968, de 1970 à 1971 et de 1975 à 1982.

Les ruptures de 1966 à 1968 apparaissent beaucoup plus pendant la saison sèche dans les régions du centre et du Sud du pays alors que dans le Nord ce sont les ruptures de 1975 à 1982 qui dominent au cours de cette saison (Annexe II.4).

Sur l'ensemble du pays les ruptures de 1976 à 1982 sont plus accentuées en saison des pluies.

Dans l'ensemble toutes les ruptures ont une tendance à la hausse. Seulement à la station de Gaoua, les ruptures survenues pendant la saison sèche ont une tendance à la baisse (Annexe II.4).

Nous constatons que tous les mois sont affectés par ce changement.

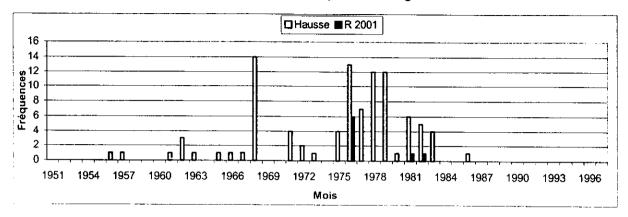


figure n° 17: Histogramme des années de rupture dans les séries chronologiques mensuelles de la température minimale pour l'ensemble des stations

× EVOLUTION

Comme pour le cas précédent, la température minimale évolue à la hausse des années 1950 à aujourd'hui (figure n°18 et figure n°19)

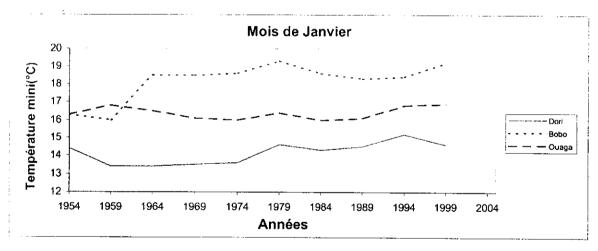


figure n° 18: Variation de la température minimale du mois de Janvier

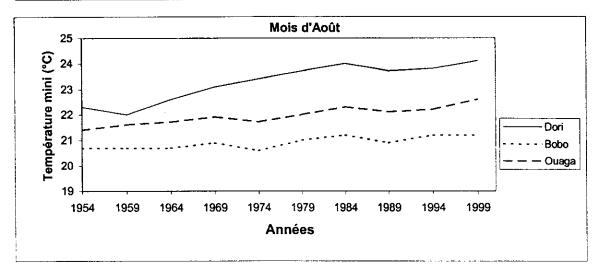
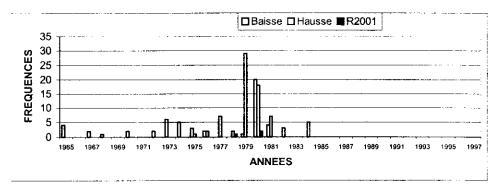


figure n° 19: Variation de la température minimale du mois d'Août


III.3 - Evapotranspiration

★ DATES DE RUPTURE

L'application des tests de Hubert et Pettitt à des séries de données mensuelles, montre deux principales périodes de ruptures (figure n°20) de 1971 à 1974 et de 1977 à 1982.

Les ruptures de 1971 à 1974 apparaissent plus pendant la saison sèche et elles correspondent à une tendance à la baisse. Aussi, toutes les ruptures de 1977 à 1982, survenues pendant la saison sèche marquent une tendance à la baisse. Par contre, les ruptures de 1977 à 1982, apparues en majorité pendant la saison pluvieuse correspondent à une tendance à la hausse (Annexe II.5).

Tous les mois sont touchés mais la série de la station de Po n'a présenté aucune rupture (Annexe II.5).

R 2001 :résultats de l'étude 2001

figure n° 20: Fréquence des années de rupture dans les séries chronologiques mensuelles de l'évapotranspiration potentielle pour l'ensemble des stations

× EVOLUTION

La variation de l'évapotranspiration potentielle dépend des saisons.

Ainsi, du mois de Novembre à Avril, c'est à dire pendant la saison sèche, l'ETP tend à diminuer sur l'ensemble du pays des années 1960 à nos jours. Cette diminution est plus accentuée à partir des années 1980 (figure n°21).

Pour les mois de Mai à Septembre, l'ETP augmente des années 1960 à aujourd'hui, cette augmentation est d'ailleurs plus accentuée à partir des années 1980 (figure n°22).

Ces deux périodes sont séparées par deux petites phases de transition, les mois d'Avril et d'Octobre, pendant lesquels nous constatons qu'au moment où l'ETP diminue dans la région du Nord, elle évolue en hausse dans le Sud du pays (figure n°23).

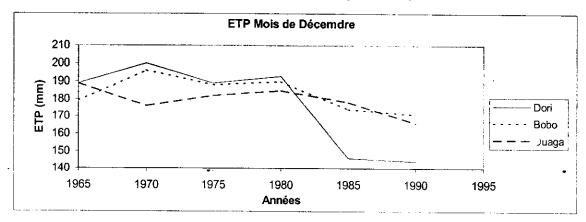


figure n° 21: Variation de l'ETP du mois de Décembre

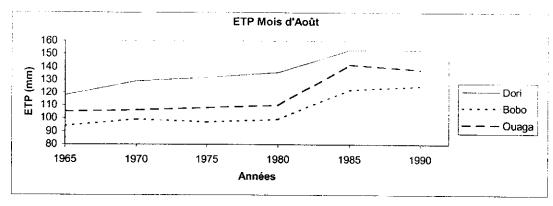


figure n° 22: Variation de l'ETP du mois d'Août

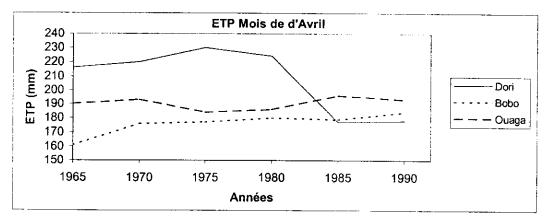
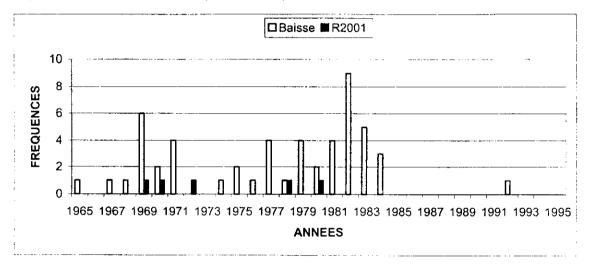


figure n° 23: Variation de l'ETP du mois d'Avril


III.4 - Humidité

X DATES DE RUPTURE

L'histogramme des dates de ruptures (figure n°24) nous montre deux principales périodes de ruptures, de 1968 à 1971 et de 1975 à 1984.

Toutes les ruptures apparues dans les différentes séries d'humidité présentent une tendance à la baisse.

Les stations de Dédougou et Po sont peu touchées, elles n'ont chacune qu'une année de rupture, respectivement 1984 et 1992 (Annexe II.6)

R 2001 :résultats de l'étude 2001

figure n° 24: Histogramme des années de rupture dans les séries chronologiques mensuelles de l'humidité pour l'ensemble des stations.

× EVOLUTION

La tendance générale de l'humidité était à la baisse des années 1960 aux années 1984, mais depuis cette date la tendance est à la hausse jusqu'à nos jours (figure n°26).

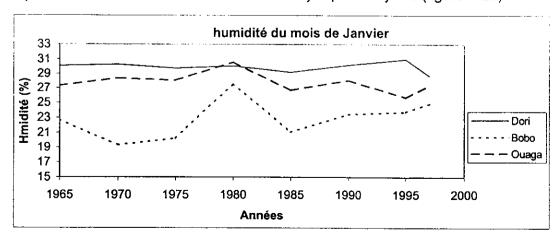


figure n° 25: Variation de l'humidité du mois de Janvier

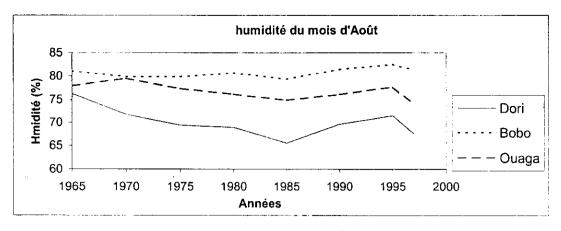
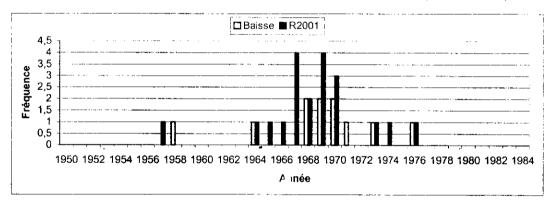


figure n° 26: Variation de l'humidité du mois d'Août


III.5 - Pluviométrie

III.5.1 - Pluviométrie annuelle

★ DATES DE RUPTURE

Les ruptures apparaissent beaucoup plus au cours de la période de 1968 à 1971 (figure n°27), La majorité des stations sont touchées au cours de cette période, mais les séries chronologiques des stations de Gaoua et Ouagadougou présentent chacune une rupture respectivement en 1958 et en 1976 (Annexe II.8).

Toutes les dates de rupture marquent une tendance à la baisse (Annexe II.8).

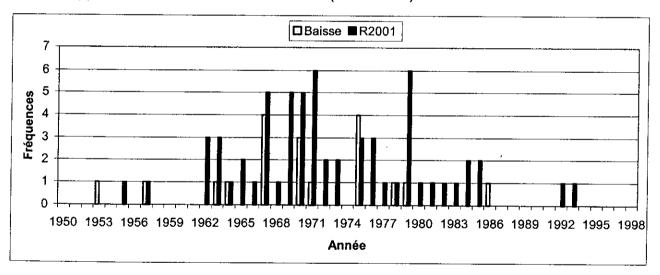
R 2001 : résultats de l'étude 2001

figure n° 27: Histogramme des dates de rupture dans les séries de pluviométrie annuelle pour l'ensemble des stations

× EVOLUTION

La pluviométrie diminue sur l'ensemble du territoire des années 1950 à aujourd'hui (figure n°28). Cependant elle évolue à la hausse au cours de cette dernière décennie par rapport aux années 1980-1984.

Une baisse moyenne de 160 mm est enregistrée au niveau des différentes stations aux années 1980-1984, par rapport aux années 1950-1960.


figure n° 28: Variation de la pluviométrie annuelle

III.5.2 - Pluviométrie mensuelle

X DATES DE RUPTURE

Les dates de rupture sont un peu dispersées, cependant les périodes de 1967 à 1970 et de 1975 à 1979, sont les plus marquées (figure n°29). De même que la pluviométrie annuelle, toutes les ruptures des séries de pluviométrie mensuelle correspondent à une tendance à la baisse.

Les ruptures sont beaucoup plus accentuées pendant la saison des pluies. Cependant aucune rupture n'apparaît aux mois de Décembre à Avril (Annexe II.7).

R 2001 :résultats de l'étude 2001

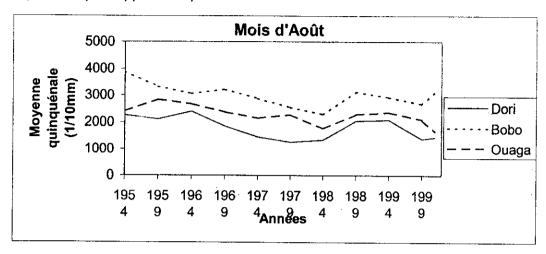
figure n° 29: Histogramme des dates de rupture dans les séries chronologiques de pluies mensuelles pour l'ensemble des stations

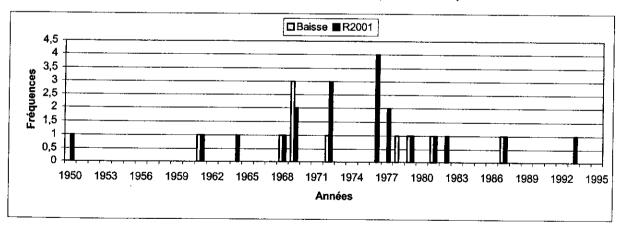
× EVOLUTION

La tendance est à la baisse au niveau de toutes les stations et pour tous les mois des années 1950 à nos jours (figure n°30). Cette baisse est plus accentuée pendant les mois d'Août et

Septembre, où le déficit de 2000 par rapport aux années 1950, est respectivement de 91 et 71mm à la station de Fada.

Sur l'ensemble du pays, on constate un déficit de 47 mm en moyenne pendant les mois d'Août et Septembre par rapport à la période avant 1970.




figure n° 30: Variation de la pluviométrie du mois d'Août

III.5.3 - Pluviométrie journalière

III.5.3.1 - Nombre annuel de jours de pluie

≭ DATES DE RUPTURE

Les dates de rupture sont plus marquées au cours de deux périodes 1968 à 1973 et de 1977 à 1983 (figure n°31). La tendance générale est à la baisse (Annexe II.8).

R 2001 :résultats de l'étude 2001

figure n° 31: Histogramme des dates de rupture des séries de nombre annuel de jours de pluie pour l'ensemble des stations

X EVOLUTION

Le nombre annuel de jours de pluie était en baisse (figure n°32), des années 1950 aux années 1980. Cette tendance a changé depuis 1985 jusqu'à nos jours. Mais comme la pluviométrie, le nombre de jours de pluie diminue du Sud vers le Nord. Nous avons une différence de 30 à 40 jours entre Bobo Dioulasso et Dori.

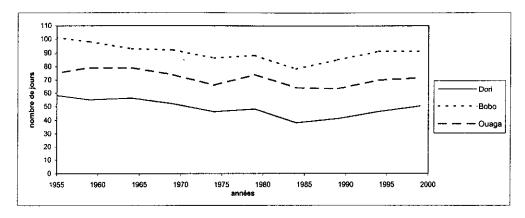


figure n° 32: Variation du nombre annuel de jours de pluie dans l'année

III.5.3.2 - Nombre mensuel de jours de pluie

Le nombre mensuel de jours de pluie varie de la même façon que le nombre annuel de jours de pluie, il tend à la baisse pour tous les mois.

Les séries chronologiques des stations de Ouagadougou et Dédougou n'ont présenté aucune date de rupture. Par ailleurs, toutes les ruptures des séries de la station de Po ont une tendance à la hausse.

III.5.3.3 - Nombre de jours de pluie dans la saison

De même que le nombre mensuel de jours de pluie, le nombre de jours de pluie dans la saison pluvieuse a diminué (figure n°33). Il a suivi la même évolution que le nombre annuel de jours de pluie.

Cette diminution des jours de pluie est en moyenne de 14 jours sur l'ensemble du pays des années 1960 à aujourd'hui.

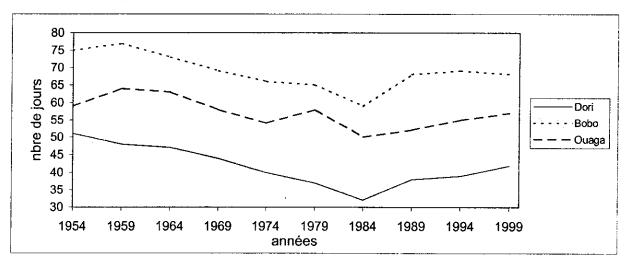


figure n° 33 : Variation du nombre de jours de pluie dans la saison

III.5.3.4 - Durée de la saison des pluies

La durée de la saison des pluies a évolué à la baisse de 1950 à 1989 (figure n°34), où elle a atteint son niveau le plus bas. Mais depuis 1990, nous constatons que la tendance est à la hausse.

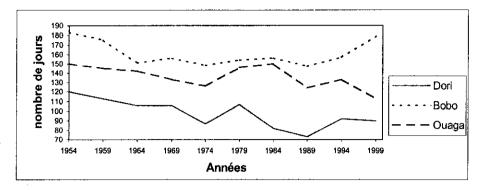


figure n° 34 :Evolution de la durée de la saison des pluies

III.5.3.5 - Début et fin de la saison des pluies

Nous n'avons pas détecté de rupture dans les deux séries, seulement la représentation graphique nous a permis de faire deux constats, qui sont :

- □ Pour le début de la saison des pluies, on assiste depuis 1970 à un retard de la pluie (figure n°35)
- □ La fin de la saison des pluies est de plus en plus précoce (figure n°36)

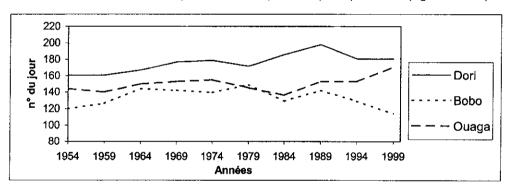


figure n° 35 : Variation du début de la saison des pluies

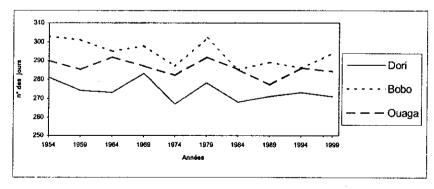


figure n° 36 : Evolution de la fin de la saison des pluies

III.5.3.6 - Catégorisation des pluies journalières

Nous avons effectué une catégorisation des pluies journalières en fonction de leurs hauteurs. Pour cela, nous avons constitué quatre classes du nombre de jours de pluies pour des hauteurs, de 0 à 2 mm, de 2 à 10 mm, de 10 à 20 mm et de 20 mm à plus.

★ DATES DE RUPTURE

La période de rupture la plus marquée, est de 1966 à 1971 (figure n°37), ce qui correspond à la période de rupture des séries de pluies annuelles étudiées un peu plus haut.

La tendance est à la baisse pour les trois classes suivantes : 2 à 10 mm, 10 à 20 mm et 20 mm et plus (Annexe II.8).

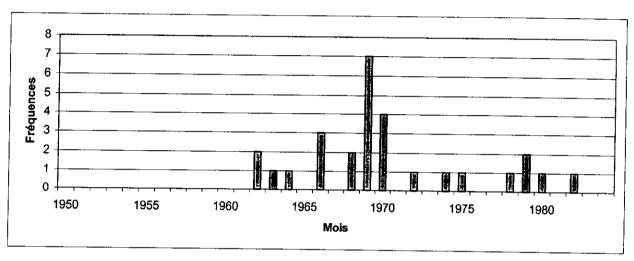


figure n° 37 : Histogramme des dates de rupture des séries chronologiques des classes du nombre de pluies pour l'ensemble des stations.

× EVOLUTION

Toutes les trois dernières classes évoluent à la baisse sur l'ensemble du territoire (figure n°38). Mais par contre la première classe, c'est à dire le nombre de jours de pluies dont la hauteur est comprise entre 0 et 2 mm, augmente (figure n°39).

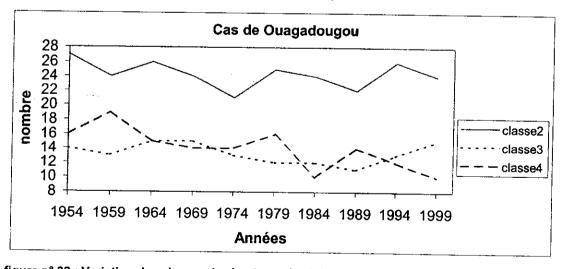


figure n° 38 : Variation des classes des hauteurs de pluies journalières

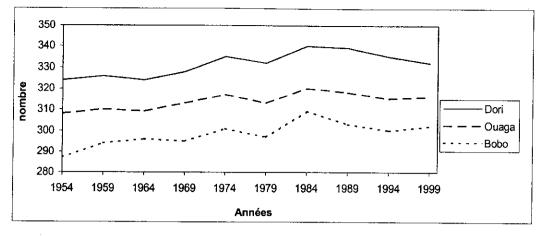


figure n° 39 : Variation du nombre de jours de la classe (0-2mm)

III.5.4 - Remarques

Nous remarquons quelques spécificités au niveau de certaines stations.

Ainsi au niveau de la station de Po nous constatons certaines variations (Annexe VI) :

- o Augmentation du nombre annuel de jours de pluie
- Augmentation de la durée de la saison des pluies
- o Augmentation du nombre de jours de pluie dont la hauteur est comprise entre 2 et 10 mm
- Augmentation du nombre de jours de pluie dans la saison

Cette augmentation du nombre de jours de pluie se confirme aussi au niveau du nombre moyen d'événements mais la hauteur moyenne d'un événement à diminuée (Annexe IV.9).

Malgré cette augmentation du nombre de jours de pluie, nous constatons un déficit de la pluie de 14 % à la station de Po par rapport aux années avant 1970 (Annexe VI).

De même nous remarquons d'autres évolutions au niveau de certaines stations :

- o Augmentation de la durée de la saison des pluies à la station de Boromo
- Augmentation du nombre de jours de pluie dans la saison à la station de Gaoua
- Augmentation de la durée de la saison des pluies à la station de Ouahigouya

Augmentation du nombre de jours de pluie dans la saison à la station de Ouahigouya

IV - INDICES DE SECHERESSE

IV.1 – Indice de Pluviosité

Le cumul des indices d'années successives, montre le changement de tendance de la pluviométrie autour de 1970 (figure n°40). Avant ces années on a une tendance humide, mais à partir de 1974 la tendance s'est inversée, avec une succession d'années déficitaires (figure n°41).

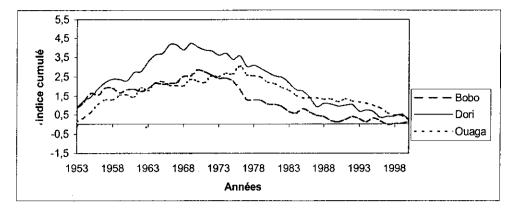


figure n° 40 : Cumul d'indice proportionnel à la moyenne

IV.2 - Indice de pluviométrie

L'évolution générale de la pluviométrie se caractérise par une succession d'années déficitaires depuis années 1970 (figure n°41) au niveau de toutes les stations (Annexe III).

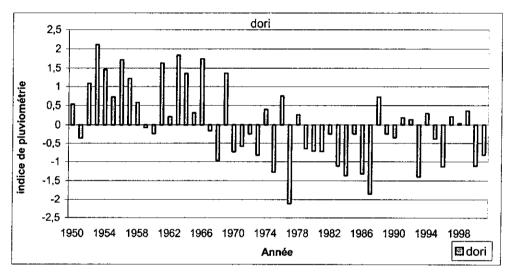


figure n° 41 : Indice de pluviométrie de la station de Dori

V - LOI DES FUITES

Nous avons étudié l'évolution des deux paramètres de la loi, le nombre moyen d'événements (figure n°42) et la hauteur moyenne d'un événement (figure n°43) au niveau de l'ensemble des stations.

Pour chacune des stations, nous avons déterminé ces paramètres pour deux périodes, de 1950 à 1970 et de 1971 à 2000 (Annexe IV).

Dans l'ensemble, le nombre moyen d'événements et la hauteur moyenne d'un événement ont diminué.

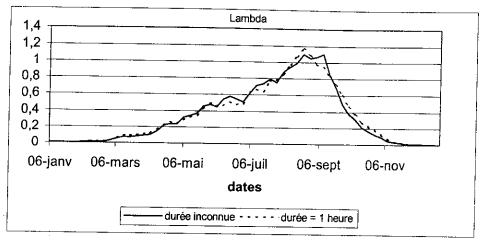


figure n° 42 : Nombre moyen d'évènements au niveau de la station de Bobo

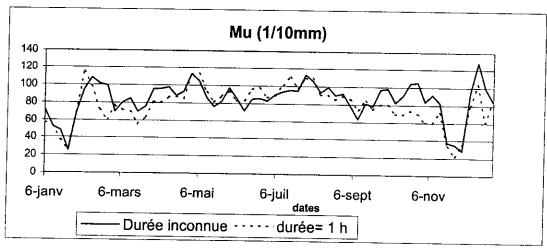


figure n° 43 : Hauteur moyenne d'évènements au niveau de la station de Bobo

VI - SYNTHESE DES RESULTATS

VI.1 - Dates de rupture

Pour l'ensemble des paramètres climatiques, les ruptures se produisent principalement autour de deux années 1970 et 1980 (tableau n°10).

Certaines séries de données présentent des ruptures autour de ces deux années, 1970 et 1980. Ces séries chronologiques sont celles de :

- l'insolation,
- la température (maxi, moyenne, mini),
- a l'ETP
- l'humidité
- la pluviométrie mensuelle
- le nombre annuel et mensuel de jours de pluies

D'autres par contre n'ont présenté de rupture qu'autour de 1970, ces séries sont :

hauteur de pluie annuelle et mensuelle,

- □ le nombre de jours de pluie dans la saison des pluies
- □ la durée de la saison des pluies
- □ les différentes classes des hauteurs des pluies journalières

Toutes ces séries ont donc présenté des ruptures aux alentours de 1970.

Paramètres	Périodes de rupture	Tendance
	1954-1957	Hausse
INSOLATION	1960-1963	Hausse
INSOLATION	1965-1972	Hausse
	1982-1984	Baisse (SS)
	1957-1964	Baisse (SS)
TEMPERATURE MAXIMALE	1967-1971	Hausse (SP)
	1973-1982	Hausse (SP); Baisse (SS)
TEMPERATURE MOYENNE	1967-1971	Hausse
	1976-1982	Hausse
	1966-1968	Hausse
TEMPERATURE MINIMALE	1970-1971	Hausse
	1975-1982	Hausse
ETP	1971-1974	Baisse (SS)
	1977-1982	Hausse (SP); Baisse (SS)
HUMIDITE	1968-1971	Baisse
	1975-1984	Baisse
PLUVIOMETRIE ANNUELLE	1968-1971	Baisse
PLUVIOMETRIE	1967-1970	Baisse
MENSUELLE	1975-1979	Baisse
NBRE ANNUEL DE JOURS	1965-1971	Baisse
DE PLUIE	1975-1982	Baisse
NBRE MENSUEL DE JOURS	1965-1971	Baisse
DE PLUIE	1975-1982	Baisse
CLASSE DU NOMBRE DE JOURS DE PLUIE Baisse (SS) : tendance à la bais	1966-1971	Baisse

Baisse (SS) : tendance à la baisse pendant la saison sèche

Hausse (SP): tendance à la hausse pendant la saison des pluies

tableau n° 10 : tableau de synthèse des périodes de rupture et de la tendance

VI.2 - Interaction entre les différents paramètres climatiques

VI.2.1 - Méthodologie

Cette analyse sera faite à l'échelle locale et à partir des paramètres de notre étude. Nous nous limiterons au territoire burkinabé sans essayer de considérer tous les facteurs du mécanisme climatique qui influence cette région.

Nous ferons une analyse du point de vue spatiale et temporelle de la variation des paramètres climatiques.

VI.2.2 Dates de rupture et tendance

Les paramètres climatiques dont nous venons d'étudier les séries chronologiques, peuvent être classés en deux groupes d'évolution différente :

o L'insolation et l'évapotranspiration présentent des ruptures autour des même dates, 1970 et 1980, et pendant les même saisons. Ces deux paramètres ont aussi les même tendances, une tendance à la hausse autour de 1970, et une tendance à la baisse autour de 1980.

Quant aux séries de température, la température minimale et moyenne présentent les même caractéristiques. Des ruptures avec une tendance à la hausse autour de 1970 et des ruptures avec une tendance à la baisse autour de 1980. Quant à la température maximale sa tendance dépend surtout des saisons, une tendance à la baisse pendant la saison de 1957 à 1964 et de 1973 à 1983 et une tendance à la hausse pendant la saison des pluies de 1967 à 1971 et de 1973 à 1982.

Dans l'ensemble les trois paramètres, l'insolation, l'ETP et la température qui constituent le premier groupe, évoluent à la hausse des années 1950 à nos jours. D'autres part, ces paramètres présentent la même variation au cours de l'année, un minimum en Août-septembre et un maximum en Mars-Avril (Annexe V).

o Le deuxième groupe, rassemble l'humidité et la pluviométrie. Les deux paramètres n'ont pas les même périodes de ruptures. Car à la différence de l'humidité qui présente des ruptures autour de 1970 et 1980, la pluviométrie ne présente de rupture qu'au voisinage de 1970. Ces paramètres ont une tendance générale à la baisse. Ils évoluent de la même façon au cours de l'année, un maximum en Août-Septembre et un minimum en Février-Mars (Annexe V).

Ces deux groupes évoluent d'une manière générale en sens inverse au cours de l'année et même dans leur variation spatiale (cf deuxième partie, II.1).

54

VI.2.3 Evolution spatiale et temporelle

Nous constatons qu'il y a deux paramètres climatiques qui peuvent être considérés comme les facteurs principaux de la variation climatique. Ces deux paramètres sont l'insolation et l'humidité.

Le premier l'insolation, représente le rayonnement solaire sur la surface du globe. Elle ne dépend dans une situation météorologique donnée que de l'intensité du rayonnement solaire.

L'insolation augmente du Sud vers le Nord au cours de l'année.

L'ETP, au même titre que l'insolation, augmente aussi du Sud vers le Nord.

L'humidité qui dépend de la l'air humide provenant de l'océan diminue du Sud vers le Nord du mois de Mars à Novembre. L'humidité comme nous l'avons dit un peu plus haut, varie dans le sens inverse de l'ETP, que ce soit au niveau de la variation spatiale et au niveau de l'évolution globale. Mais par contre la pluviométrie évolue dans le même sens que l'humidité.

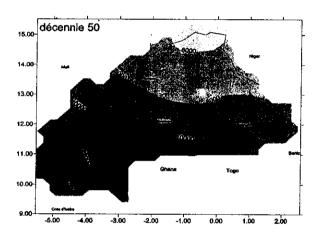
AU niveau de l'évolution de tous les différents paramètres climatiques, le changement de pente des différentes courbes aux alentours de 1984 montrent l'interaction qui existe entre ces paramètres.

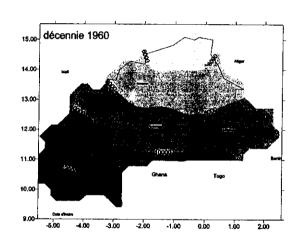
Ainsi, des années 1960 aux années 1984, l'insolation, la température moyenne et l'ETP (pendant la saison des pluies) ont évolué à la hausse et depuis la tendance est à la baisse. L'évolution de l'ETP pendant la saison sèche est caractérisée par une tendance à la baisse des années 1960 aux années 1984 et par une inversion de tendance après cette période.

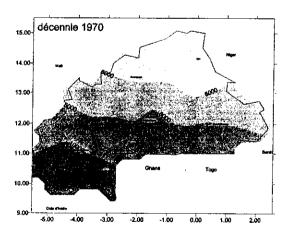
Mais par contre pour l'humidité et la pluviométrie la tendance était à la baisse des années 1950 aux années 1984 et depuis, cette tendance est à la hausse.

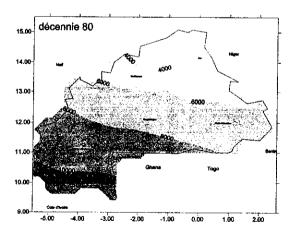
Ces interactions entre les paramètres climatiques se remarquent au niveau de leurs évolutions au cours de l'année.

En effet l'évolution des courbes au niveau des trois stations (Dori, Ouaga et Bobo) (Annexe V) montrent que plus l'humidité augmente, plus l'ETP diminue. Cependant l'augmentation de l'humidité ne s'accompagne pas d'une diminution de la température. Car du mois de Mars jusqu'en Mai, l'humidité augmente et en même temps la température augmente aussi. Au cours de cette période, nous constatons que l'ETP diminue aussi au niveau des trois stations, mais à partir du mois de Mai cette diminution est plus accentuée à cause de la baisse de la température.


Une autre période qui caractérise cette interaction est la période du mois de Janvier à Mars, nous constatons une évolution de l'insolation et de l'humidité à la baisse au cours de cette période alors que la température moyenne augmente. Cette phase bien que brève mérite une étude un peu plus poussée, en tenant compte de tous les facteurs climatiques.


VI.3 - La pluviométrie


L'humidité est un des facteurs principaux de la pluviométrie. Comme on l'a vu un peu plus haut, une diminution de l'humidité engendre d'une manière générale une baisse de la pluviométrie. La variation de la pluie cumulée peut être due à la variation d'un certain nombre de ses caractéristiques dont, la hauteur de la pluie journalière, le nombre de jours de pluie et la durée de la saison des pluies. Ces paramètres pluviométriques évoluent tous d'une manière générale de la même façon que la pluviométrie.


Nous remarquons que la hauteur moyenne d'un événement à plus diminuer des années 1970 à aujourd'hui par rapport au nombre d'événements.

Dans l'ensemble toutes les caractéristiques de la pluviométrie ont évolué à la baisse des années 1970 à 1984. Ainsi nous avons assisté au cours de la seconde moitié du vingtième siècle à une migration des isohyètes du Nord vers le Sud. Cependant il y'a une petite amélioration de la pluviométrie au cours de la dernière décennie (figure n°44).

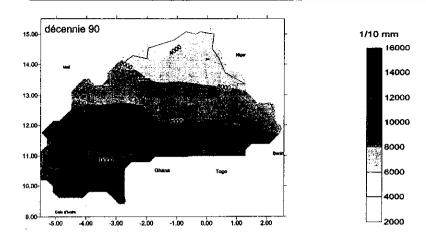


figure n° 44 : pluies moyennes inter-annuelles au cours des décennies 1950 à 1990 au Burkina Faso (in Paturel, note interne, 2001)

VI.4 - Conclusion partielle

Le rayonnement solaire, est la principale source d'énergie sur terre. Un équilibre s'établit entre l'énergie solaire qui arrive et le rayonnement émis par la Terre. La température à la surface de la terre s'ajuste de manière à maintenir cet équilibre entre énergie absorbée et énergie perdue. (Marie A, 2002)

Vers le moi d'Août la température diminue pendant que l'humidité augmente. Les pertes par évaporation seront réduites à leur minimum. C'est également pendant ce mois que se produisent les pluies maximales.

D'autre part, une plus grande quantité de vapeur d'eau dans l'atmosphère ne s'accompagne pas nécessairement de pluies plus abondantes. Réciproquement, une moindre humidité n'implique pas une réduction de la pluie. C'est la dynamique atmosphérique qui permet ou non ce déclenchement (Isabelle P et al., 1998).

SIXIEME PARTIE: CONCLUSION GENERALE

CONCLUSION ET PERSPECTIVES

Au terme de cette étude que nous avons effectuée à partir des données climatiques de dix stations synoptiques du Burkina Faso, les résultats obtenus permettent de caractériser le changement climatique produit dans ce pays.

Les résultats des différents tests statistiques sur les séries chronologiques des différents paramètres climatiques, à savoir, l'insolation, l'évapotranspiration, la température, l'humidité et la pluviométrie, montrent bien qu'un changement climatique a affecté le Burkina aux alentours des années 1970 puis aux alentours des années 1980.

Ce changement se caractérise dans l'ensemble par une augmentation de l'insolation, de la température et de l'évapotranspiration pendant la saison des pluies. D'autre part, il y a une diminution de l'insolation de l'évapotranspiration et de la température maximale pendant la saison sèche de.

L'évolution de l'humidité et de la pluviométrie se caractérise par une chute relativement importante des années 1970 aux années 1984.

Cette tendance à la baisse de la pluviométrie, s'accompagne d'une baisse des nombres de jours de pluies et d'une diminution de la durée de la saison des pluies.

Mais depuis 1984, il y a une légère tendance à la reprise de la pluviométrie tout en restant inférieur à la moyenne 1950-2000.

Les travaux effectués dans cette étude n'ont concerné que dix stations du Burkina. Il importe d'étendre cette étude à d'autres régions d'Afrique pour mettre un peu plus en relief l'apparition des dates de rupture dans les séries chronologiques des paramètres climatiques. Aussi, d'autres paramètres tel que la nébulosité, la pression, le vent peuvent être ajouter afin d'élargir le champ de l'étude.

Les résultats que nous venons d'obtenir, montrent bien que le climat n'est pas stable.

De ce fait, un important travail mérite d'être effectuer sur la mise à jour de certains coefficients qui entrent dans la détermination de certains paramètres climatiques (ETP, etc.) et hydrologiques (temps de base, temps de monté, crues centennale etc.) utilisés par les promoteurs des projets de développement.

ANALYSE DE	LA V	ARIABILI"	TE CLIMA	ATIQUE A	U BURKINA	A FASO AU	COURS DE LA	SECONDE	MOITIE DU 20 ^{èn}	SIECLE.	

REFERENCES BIBLIOGRAPHIQUES

60

REFERENCES BIBLIOGRAPHIQUES

Demarrée G., 1990: An indication of climatic change as seen from the rainfall data of Mauritanian station. *Theroet.Appl.Climatol.42, 139-147*

Koupkonou A., 2001 : Détermination des ruptures dans les séries chronologiques de paramètres météorologiques : application aux stations du Burkina Faso. Mémoire de fin d'étude EIER 2001

Hubert, P.&Carbonel J.P., 1987: Approche statique de l'aridification de l'afrique de l'ouest . J. hydrol.95, 165-183

Hubert P., Carbonel J.P., Chaouche A., 1989: Segmentation des séries hydrométriques : application à des séries de précipitations et de débits de l'Afrique de l'ouest. *J.hydrol.110*, 349-367

Isabelle P., 1998: Water Ressources Variability in Africa during the XXth Century. *IAHS* n°252, 35-44

Marie A M., 2002 : Température moyenne à la surface de la Terre et effet de serre. Centre National de la recherché scientifique (LGGE) Paris

Lamb P., 1983 : Subsaharan rainfall update for 1982: continued drought. *Journal of climatology*, n°3, 419-422

Nicholson S.E., 1979: Revised rainfall series for the west african subtropics *Monthly weather Review, n°107, 620-623.*

Nicholson S.E., 1985: subsaharan rainfall 1981-1984. J.Clim.Appl.Met 24,1388-1391

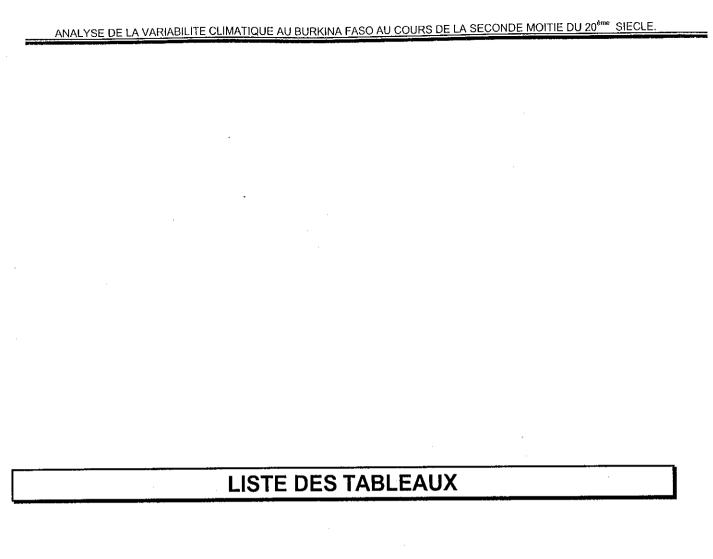
Ouedraogo M., 2001: Contribution à l'étude de la variabilité climatique sur les ressources en eau en Afrique de l'ouest. Analyse des conséquences d'une sécheresse persistante: normes hydrologiques et modélisation régionale. *Thèse de 3*^{ème} cycle, Université Montpellier II, 255p

Oliviry J.C., 1983 : Le point en 1982 sur l'évolution de la sécheresse en Sénégambie et ax lles du Cap-Vert. Examen de quelques séries de longue durée (débits et précipitations). Cah.ORSTOM, série hydrol.20(1)

Roche M., 1961: Pratique des mesures et interprétation des résultats en climatologie et hydrologie. Ecole nationale du génie rural (Paris)

Sircoulon J., **1976**: Es données hydropluviométriques de la sécheresse récente en Afrique intertropicale. Comparaison avec les sécheresses « 1913 » et « 1940 ». *Cah.ORSTOM, Série Hydrol. XIII(2)*

Sircoulon J., 1987: Variation des débits des cours d'eau et des niveaux des lacs en afrique de l'ouest depuis le début du 20éme siècle. In: The influence of climate change and climatic variability on the hydrologic regime and water ressources (ed. By S.I.Solomon, M.Beran&W.Hogg) (Proc Vancouver Symp, August 1987), 13-25. IAHS publ n°168


Tapsoba D., 1997 : Caractérisation événementielle des régimes pluviométriques ouest Africains et de leur recent changement. *Thèse 3^{ème} cycle, Université de Paris-XI (Orsay), 145p*

LISTES DES FIGURES

LISTES DES FIGURES

figure n° 1 : situation géographique du Burkina Faso	9
figure n° 2 : régions climatiques du Burkina Faso	
figure n° 3 : mécanismes climatiques en Afrique de l'Ouest	
figure n° 4 : Structure schématique de l'atmosphère sur l'Afrique de l'ouest Pendant la sa	
des pluies	
figure n° 5 : Coupe schématique nord-sud en Août de la troposphère au dessus de l'Afriq	
vers le méridien origine	
figure n° 6 : Exemple d'application du principe de la méthode	
figure n° 7 : situation géographique des stations de mesure	
figure n° 8: Histogramme des dates de rupture dans les séries chronologiques mensuelle	
annuelles d'insolation pour l'ensemble des stations	
figure n° 9:Variation de l'insolation au mois de Mai	
figure n° 10: Variation de l'insolation annuelle	
figure n° 11: Histogramme des années de rupture dans les séries chronologiques	
mensuelles et annuelles de la température maximale pour l'ensemble des stations	37
figure n° 12: Variation de la température maximale au mois de Janvier	
figure n° 13:Variation de la température maximale au mois d'Août	
figure n° 14: Histogramme des années de rupture dans les séries chronologiques	
mensuelles de la température moyenne pour l'ensemble des stations	38
figure n° 15: Variation de le température moyenne au mois de Février	39
figure n° 16: Variation de la température moyenne au mois de Septembre	39
figure n° 17: Fréquence des années de rupture dans les séries chronologiques mensuelle	es
de la température minimale pour l'ensemble des stations	40
figure n° 18: Variation de la température minimale du mois de Janvier	40
figure n° 19: Variation de la température minimale du mois d'Août	41
figure n° 20: Fréquence des années de rupture dans les séries chronologiques mensuelle	es
de l'évapotranspiration potentielle pour l'ensemble des stations	
figure n° 21: Variation de l'ETP du mois de Décembre	
figure n° 22: Variation de l'ETP du mois d'Août	42
figure n° 23: Variation de l'ETP du mois d'Avril	42
figure n° 24: Histogramme des années de rupture dans les séries chronologiques	
mensuelles de l'humidité pour l'ensemble des stations	
figure n° 25: Variation de l'humidité du mois de Janvier	
figure n° 26: Variation de l'humidité du mois d'Août	44
figure n° 27: Histogramme des dates de rupture dans les séries de pluviométrie annuelle	
pour l'ensemble des stations	
figure n° 28: Variation de la pluviométrie annuelle	
	<u> </u>

figure n° 29: Histogramme des dates de rupture dans les séries chronologiques de pluies	3
mensuelles pour l'ensemble des stations	
figure n° 30: Variation de la pluviométrie du mois d'Août	
figure n° 31: Histogramme des dates de rupture des séries de nombre annuel de jours de	
pluie pour l'ensemble des stations	
figure n° 32: Variation du nombre annuel de jours de pluie dans l'année	
figure n° 33 : Variation du nombre de jours de pluie dans la saison	
figure n° 34 :Evolution de la durée de la saison des pluies	
figure n° 35 : Variation du début de la saison des pluies	
figure n° 36 : Evolution de la fin de la saison des pluies	
figure n° 37 : Histogramme des dates de rupture des séries chronologiques des classes	
nombre de pluies pour l'ensemble des stations.	49
figure n° 38 : Variation des classes des hauteurs de pluies journalières	
figure n° 39 : Variation du nombre de jours de la classe (0-2mm)	
figure n° 40 : Cumul d'indice proportionnel à la moyenne	
figure n° 41 : Indice de pluviométrie de la station de Dori	
figure n° 42 : Nombre moyen d'évènements au niveau de la station de Bobo	
figure n° 43 : Hauteur moyenne d'évènements au niveau de la station de Bobo	
figure n° 44 : pluies moyennes inter-annuelles au cours des décennies 1950 à 1990 au	
Burkina Faso (in Paturel, note interne, 2001)	57

65

LISTE DES TABLEAUX

ableau n° 1 : Caractéristiques climatiques des différentes régions	12
ableau n° 2 : caractéristiques asymptotiques des deux distributions du modèle pour Δ	
connue	25
tableau n° 3 : caractéristiques asymptotiques des deux estimateurs du modèle pour Δ	
connue	25
tableau n° 4 : Coordonnées géographiques des stations synoptiques	27
tableau n° 5 : séries chronologiques d'insolation	29
tableau n° 6 : séries chronologiques de température	30
tableau n° 7 : séries chronologiques d'ETP	30
tableau n° 8: séries chronologiques d'humidité	31
tableau n° 9: séries chronologiques de pluviométrie	3′
tableau n° 10 : tableau de synthèse des périodes de rupture et de la tendance	53

ANALYSE DE LA V	ARIABILITE CLI	MATIQUE AL	I BURKINA FAS	O AU COURS DE	LA SECONDE N	MOITIE DU 20 ^{eme}	SIECLE.
		V					
						·	
				•	-		
			ANNEX	ES			,
	**					•	

ANNEXES

ANNEVE I	: Exemples des résultats de traitement des séries chronologiques avec Kronostat	69
ANNEXE	I-1: Résultat d'analyse des séries chronologiques	70
Annovo	1.2: Test de corrélation sur le temps	7 1
Annovo	1.3 · Evolution de la variable II du test de Pettitt	12
Annexe	I-4 : Segmentation de Hubert	73
Annexe	1-4 : Segmentation de nubert	
Annexe	II : Tableau des résultats des tests de Kronostat	74
Annava	IL1 :Tableau des résultats des séries d'insolation	10
Anneye	II-2 :Tableau des résultats des séries de température maximale	76
Δηηρνο	II-3 : Tableau des résultats des séries de température moyenne	11
Anneve	II-4:Tableau des résultats des séries de température minimale	78
Annexe	II-5 : Tableau des résultats des séries d'évapotranspiration	79
Annova	II-6 :Tableau des résultats des séries d'humidité	δU
Anneve	II-7 :Tableau des résultats des séries de pluviométrie mensuelle	81
Anneve	II-8 : Tableau du nombre mensuel de jours de pluie	82
Annova	II-9 :Tableau des résultats des séries des données annuelles	83
Anneve	III : Résultats d'indices pluviométriques	84
AIIICAO	m, resources a maisses present and	
Annexe	IV : Paramètres de la loi des fuites	.86
Annexe	IV-1. Paramètres de la loi des fuites à la station de Dori	87
Annexe	IV-2: Paramètres de la loi des fuites à la station de Ouahigouya	88
Anneve	IV-3: Paramètres de la loi des fuites à la station de Bogandé	89
Anneye	IV-4. Paramètres de la loi des fuites à la station de Dédougou	90
Annexe	IV-5: Paramètres de la loi des fuites à la station de Ouagadougou	91
Anneve	IV-6 Paramètres de la loi des fuites à la station de Fada	92
Annexe	IV-7: Paramètres de la loi des fuites à la station de Boromo	93
Annexe	IV-8: Paramètres de la loi des fuites à la station de Bobo Dioulasso	94
Annexe	IV-9: Paramètres de la loi des fuites à la station de Po	95
Annexe	IV-10: Paramètres de la loi des fuites à la station de Gaoua	96
Annexe	IV-11: Modèle de description du régime pluviométrique	97
Annexe	V : Courbes de variation des différents paramètres climatiques	.99
A mm a	V-1: Courbes des paramètres climatiques à la station de Dori	100
Annexe	V-2 Courbes des paramètres climatiques à la station de Dori	101
Annexe	V-3 Courbes des paramètres climatiques à la station de Dori	102
Annexe	V-3 Courbes des parametres offinatiques à la station de Dominion	
Anneve	VI : Données pluviométriques103	

ANALYSE DE LA VARIABILITE CLIMATIQUE AU BURKINA FASO AU COURS DE LA SECONDE MOITIE DU 20 ^{ème} SIECLE
Annexe I: Exemples des résultats de traitement des séries chronologiques avec Kronostat
Annexe I: Exemples des resultats de traitement des series chronologiques avec Nonostat
Ministry Statistics Line 2002

Annexe 1.1 Modèle de fiche résumant tous les résultats des tests Exemple : Station de

Zorgho pour le parmètre pluie annuelle

Identification: 1200200099 ZORGHO; 12,250; -0,617

Varaible étudiée : pluie cumulée en 1/10 mm pour l'année entière

Unité: 1/10 mm

Chronique de : 1956 à 1999

Test de normalité sélectionnée: Les données suivent une loi normale

Test de vérification du caractère aléatoire

Test de Corrélation sur le RANG

Hypothèse nulle(série chronologique aléatoire) rejetée au seuil de confiance de 99% Hypothèse nulle(série chronologique aléatoire) rejetée au seuil de confiance de 95% Hypothèse nulle(série chronologique aléatoire) rejetée au seuil de confiance de 90%

Valeur du variable de calcul: -3,5804

Tests de détection de rupture

Test de BUISHAND et ellipse de contrôle

Hypothèse nulle(absence de <u>rupture) rejetée</u> au seuil de confiance de 99% Hypothèse nulle(absence de <u>rupture) rejeté</u>e au seuil de confiance de 95% Hypothèse nulle(absence de <u>rupture) rejeté</u>e au seuil de confiance de 90%

Méthode non paramétrique de PETTITT

Hypothèse nulle(absence de <u>rupture) rejeté</u>e au seuil de confiance de 99% Hypothèse nulle(absence de <u>rupture) rejeté</u>e au seuil de confiance de 95% Hypothèse nulle(absence de <u>rupture) rejeté</u>e au seuil de confiance de 90% Probalité de dépassement d<u>e la valeur critiq</u>ue du test : 7,66E-04 en 1969

Méthode bayésienne de LEE et HEGHINIAN

Mode de fonction densité de probabilté à posteriori de la position de rupture:0,3156 en 1969

Segmentation de HUBERT

Niveau de signification du test de Scheffé:1%

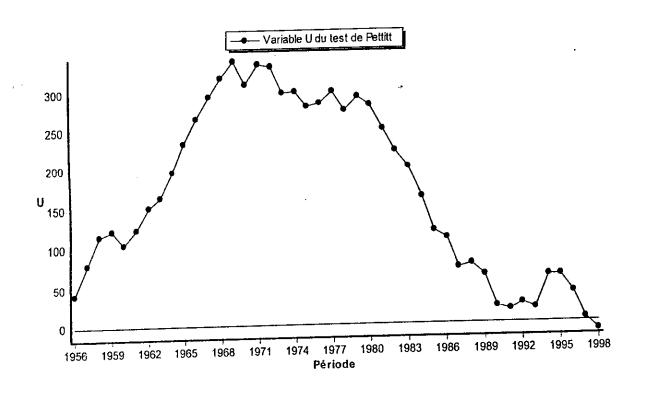
Début	Fin	Moyenne	Ecart type
1956	1969	8983	1074
1970	1999	7111	1287
	1 1		

\nouv-fichier-plui\plui-an-stat-choisies\bf200081.sta

Identification

1200200081 ZORGHO; 12.250; -0.617

Variable étudiée


pluie cumulée en 1/10 mm pour l'année entière

Unité

1/10 mm

Chronique de

1956 à 1999

Hypothèse nulle (absence de rupture) rejetée au seuil de confiance de 99% Hypothèse nulle (absence de rupture) rejetée au seuil de confiance de 95% Hypothèse nulle (absence de rupture) rejetée au seuil de confiance de 90%

Annexe II:	Tableaux des résultats des tests de rang, de rupture et coefficient de variation
	÷-
	7

ANALYSE DE LA VARIABILITE CLIMATIQUE AU BURKINA FASO AU COURS DE LA SECONDE MOITIE DU 2060 SIECLE.

Annexe II.1 : Résultats d'insolation

GAOUA	Test sur le rang	4	٧	4	<	ď.	ž	ž	4	¥.	¥ Z	¥ Z	NA
	Dates de rupture	1982				1966	1969	1978	1971	1975	1963	1962	1960
	V. R (%)					-14,67					-8,21		
8	Test sur le rang	4	A X	∢	A'A	∢	ž	A A	A A	∢	Ϋ́	∢	4
	Dates de Test sur rupture fe rang					1990					1990		
SSO	×.%	49,912	-7,29	-12,84		7,21	22,49	10,46	19,36	10,33	10,63	3,95	-8,13
BOBO-DIOULASSO	Test sur le rang	<	∢	₹ Z	∢	ž	<	A Z	¥ X	₹ Ž	4	A A	¥.
BOBO	Dates de Test sur rupture le rang	1956	1979	1984		1972	1955	1963	1971	1971	1954	1954	1983
	×.%)	-9,395	-7,60	-7,79		-12,05	11,04	19,67	31,59	16,22	12,76	11,46	-10,84
BOROMO	Test sur le rang	<	∢	¥	∢	∢	4	<	₹ Z	ž	∢	<	4
Ä	Dates de Test sur rupture le rang	1982	1981	1980		1990	1973	1955	1977	1970	1954	1954	1983
MA	S. S.	899'9-	14,23	-11,55		16,37		6,85	6,31	9,67			-1,34
FADA N'GOURMA	Test sur le rang	4	¥	Ą	4	Ą	۷	¥	ž	¥	4	4	٨
FADA	Dates de Test sur rupture le rang	1956	1979	1984		1972		1963	1971	1971			1983
AERO	× × (%)		6,18		3,73	-22,48	17,93	25,41	28,58	15,52	-23,08	8,97	32,50
OUAGADOUGOU AERO	Test sur le rang	∢	ΑN	∢	<	Ϋ́	₹	Ą	¥	₹	∢	¥	¥.
	Dates de rupture		1959		1955	1965	1969	1962	1967	1968	1968	1962	1960
,	V.R (%)			-6,75		9,44	6,90	15,94	20,17	11,27		66'9	8,12
ревопсов	Dates de Test sur rupture le rang	4	4	∢	∢	NA	AN	NA A	A A	NA	∢	¥	ΑĀ
DE	Dates de rupture			1972		1966	1965	1965	1967	1970		1960	1960
٨	V.R (%)	4,927	-6,67	-8,53		9,81		69'6	12,36				4,83
OUAHIGOUYA	Test sur le rang	N A	Ϋ́	NA	A	٧	∀	NA	A A	∢	∢	∢	A A
οn	Dates de rupture	1972	1976	1972		1960		1966	1967				1969
	X.X (%)			-2,47		16,91			22,28	13,56	-8,24	8,94	
DORI	Test sur le rang	٧	A	٧	∢	∢	∢	∢	ĄN	¥	٧	A	٧
	Dates de rupture			1985		1954			1967	1955	1961	1952	
STATIONS		Janvier	Février	Mars	Avril	Mai	Juin	Juiffet	Août	Septembre	Octobre	Novembre	Décembre

A: Aléatoire NA: Non Aléatoire V.R : Variation Relative

Annexe II.2 : Résultats de la température maximale

Dates de rost sur v.R Dates de rupture le rang Janvier Dates de rupture le rang (%) Pupture rupture la rang (%) Pupture rupture la rang (%) Janvier A 1980 1973 Mars NA 78,52 A Avril 1979 NA 61,44 A Juin 1969 NA 58,22 1957		OUAHIGOUYA	_	DEDOUGOU		OUAGADOUG	JONGON.	OU AERO	FADA	FADA N'GOURMA	4	æ	BOROMO		B080-	BOBO-DIOULASSO	so		6	-	Ø	GAOUA	l
1978 NA 78,52 1979 NA 61,44 1969 NA 58,22	Dates de Test sur rupture le rang	tsur V.R ang (%)		Dates de Test sur rupture le rang	V. R (%)	Dates de Test sur rupture le rang	Test sur le rang	× %	Dates de nupture	Test sur le rang	2 % R (%	Dates de 7	Test sur le rang	X. % (%)	Dates de Test sur	Test sur le rang	8. % 0 %	Dates de Test sur rupture le rang		8. %)	Dates de Test sur		> § 8. 8
1978 NA 78,52 1979 NA 61,44 1969 NA 58,22		NA -5,10	1980	¥	-5,06	1980	¥	4,96		6		1970		+	+	¥	- 40	+-	4	-) «	
1978 NA 78,52 1979 NA 61,44 1969 NA 58,22		NA -2,81	1 1973	ž	-3,15	.1973	¥	-2,48		4			4		1960	ž	-1,96		<			<	
1978 NA 78,52 1979 NA 61,44 1969 NA 58,22	, 	A		∢			<		1959	¥ ×	-3,01		< <	-		4			<			<	
1979 NA 61,44 1969 NA 58,22	,	∢		∢			4			4		1978	₹	2,99	1978	₹ Ž	3,99		4		<u> </u>	<	
1969 NA 58,22	*	∢		4		1982	¥	3,02	1982	¥	3,18	1982	₹	3,45	1	<			-		1982	4 Z	2,76
		. A		4		1989	¥	1,25		4		1988	ž	2,58	1952	<	-5,91		<		1989	₹	2,49
Juillet 1964 NA 55,24	*	<		4	:	1978	¥	2,21		I		1981	¥	2,53		<		1984	- ✓	-3,22	- 	4 Z	
Août 1967 NA 55,19 1967		NA 4,70		¥		1971	¥	2,92	1977	¥ Z	2,37	1977	ş	2,80		∢			<	+	<u> </u>	¥	
Septembre 1970 NA 62,57 1969		NA 4,36	1979	Ą	2,62	1979	₹ Ž	3,18	1975	¥ Z	3,73	1976	¥	2,23	1978	ž	1,70		<	 	1975	4 Z	2,90
Octobre 1971 NA 76,08 1969	369 NA	A 3,22		٨			4		1977	₹ Z	2,78		<			⋖			<			ž	
Novembre	∢		1961	NA	-2,7005	1962	¥	-2,715	1959	ž	-3,325		4			<			V		<u> </u>	A X	
Décembre A 1983		NA -3,1503	5	A			∢			< <			∢		1983	4	-1,298		<			<	

A:Aléatoire NA: Non Aléatoire V.R : Variation Relative

Mémoire de fin d'études Juin 2002 Réalisé et présenté par: *IBRAHIM* Boubacar 31^{eme} Promotion

Annexe II. 3: Résultats de la température movenne

							! !																				
SKATIONS MOIS		DOR	-	'no	ОПАНІВОПУА	Α,	0	DEDOUGOU	_	OUAGADOUGOU AERO	nosnc	(ERO	FADA	FADA N'GOURMA	Α.	80	BOROMO		BOBO-DIOULASSO	OULASS	o.		ЬО		GAOUA	٧٢	
	Dates de Test sur rupture le rang	Test sur le rang	V. R (%)	Dates de Test sur rupture le rang	Test sur le rang	V. R (%)	Dates de rupture	Dates de Test sur rupture le rang	X.X (%)	Dates de Test sur rupture le rang		V.R (%)	Dates de Test sur rupture le rang		V. R (%)	Dates de Test sur rupture le rang		V.R De	Dates de Test sur rupture le rang		V.R. Da (%)	Dates de Te rupture le	Test sur V.	V.R Da (%)	Dates de Test sur rupture le rang		X .X (%)
Janvier		∢			٧			∢			<			∢			∢			∢			∀		1991 N	AN -5	-5,43
Février		∢			4			∢			<			4			∢		1962	A A	3,74		٧		1992	۸ ک	-5,78
Mars	1968	Ą V	3,67	1977	Ą	2,40		∢			∢		1968	¥.	4,64	1977	¥	2,22	1977	¥ Z	2,76		٧			٨	
Avrii	1968	ΑN	3,76	1979	¥	2,94	1978	ž	2,72	1978	Ž Ž	2,07	1972	Ą.	2,68	1978	¥.	2,77	1978	¥ N	3,34	:	٧		N 8761	NA 2	2,78
Mai	1968	ΑN	3,63		¥		1982	Ϋ́	3,08	1982	ž	3,53	1982	¥	3,64	1982	Ą	3,85	1981	¥N	6,26		٧		1981 N	NA 2	2,96
uin	1969	Υ «	5,26	1968	ž	1,89		ď Ž		1968	Ą.	2,73		∢		1980	Ą.	2,30		∢			٧		1979 N	NA 1	1,62
Juillet	1969	A.	5,50	1978	¥	2,51	1980	Ϋ́	2,36	1978	Ž Ž	2,44		∢		1979	₹	2,57		¥.			A		N 6761	A A	1,78
Août	1967	₹ Ž	7.34	1971	ž	3,86	1981	¥.	1,89	1976	ž	2,80	1977	¥	2,28	1977	¥.	2,35	1977	ΑN	1,65		٧		N 7761	NA .	1,33
Septembre	1970	N A	7.33	1970	A A	4,24	1979	٧	2,61	1971	ž	3,27	1975	₹	3,32	1971	¥	2,13	1976	A A	1,97	:	ΑN		N 6761	NA 2	2,52
Octobre	1971	AN	4,70	1969	NA	3,23		4		1978	A A	1,77	1977	Ą	2,60	1976	Ą.	2,06	1969	AM	1,75		4		N 8761	<u>-</u> ₹	1,70
Novembre		٧		1977	NA	4,63	1959	٧	-3,75		4		1982	٧	3,06		4		1978	AN	1,74		∢			∢	
Décembre		٧			А			٧			٧			4			A		1986	ΨZ	2,96		۷		1983 N	ΨV	-5,43

A; Aléatoire NA: Non Aléatoire V.R : Variation Relative

Annexe II.4: Résultats de la température minimale

MOIS		DORI		OUA	OUAHIGOUYA	A) 	DEDOUGOU	<u> </u>	OUAGADOUGOU AERO	OUGOU	4ERO	FADA	FADA N'GOURMA	4	ă	BOROMO		BOBO.	BOBO-DIOULASSO	os		0		l ^o	GAOUA
	Dates de rupture	Test sur le rang	V. R (%)	Dates de Test sur rupture le rang	Test sur le rang	V. R (%)	Dates de Trupture	Test sur le rang	V. R (%)	Dates de rupture	Test sur le rang	X.%)	Dates de rupture	Test sur le rang	N. (%)	Dates de rupture	Test sur le rang	X.%)	Dates de rupture	Test sur le rang	X. %)	Dates de T	Test sur le rang	V. R (%)	Dates de rupture	Test sur te rang
Janvier	1976	NA	8.33		AN A			∢			4		1976	Ą.	5,88		4		1962	₹	12,35		4		1980	¥ Z
Février	1979	ΑN	7,98	1979	NA	10,36	1966	ž	6,13		∢		1966	A Z	7,52		A A		1962	ď Z	13,65		∢		1992	Ą Z
Mars	1977	ΑN	9,00	1978	NA	96,9	1968	NA	6,95		ž		1968	Υ _Z	6,95	1968	Ϋ́	5,81	1968	₹ Ž	7,19	1981	Ą	12,16		¥
Avril	1965	ΑN	6.93	1981	AM	7,08	1972	NA	5,67	1976	Ϋ́	2,56	1979	Ą.	3,95	1976	¥	4,40	1976	₹	4,65	1981	Ą	7,36	1976	¥
Mai	1968	ĄN	5,83	1982	NA	4,80	1968	NA	5,32	1982	¥	4,42	1982	¥	4,47	1968	Ϋ́	4,00	1976	¥	3,62	1982	₹ Ž	6,74	1979	¥.
Juin	1968	ΑÄ	6,97	1968	NA	4,84	1968	A A	5,40	1980	ΑĀ	3,33	1979	ž	2,72	1972	A.	3,12	1972	Ą Z	2,46	1981	AN A	6,80	1979	A A
Juillet	1978	ΑN	6,03	1978	ΑN	3,33	1976	N A	3,85	1978	¥	2,67	1978	Ą	1,98	1979	Ą	2,92	1978	Ą	2,47	1981	¥	6,74	1979	Ą
Août	1967	Ā	6,07	1971	NA	3,06	1981	NA A	2,44	1976	¥ Z	2,68	1976	¥	2,18	1976	ž	1,95	1976	Ϋ́	2,17	1980	ž	4,86	1978	N A
Septembre	1971	Ą	2,06	1971	ΑN	96,0	1979	ΑN	3,03	1979	¥	4,16	1975	₹	2,59	1976	ž	3,12	1975	ΑŽ	2,60		₹ Z		1978	N A
Octobre	1971	Ā	90'.2	1978	NA A	5,95		NA		1977	AN A	3,25		4		1976	ž	2,07	1976	A A	1,83		٧		1978	Ą
Novembre	1977	AA	4,48	1977	NA	5,46		∢			4		1977	Ą.	6,37		٧		1963	NA A	4'04		4		-	∢
Décembre		X A		1981	A'N	10,837		∢			٧			ΑN			٧		1963	NA A	6,4883		4		1973	ΑN

A: Aléatoire NA: Non Aléatoire V.R : Variation Relative

Annexe II.5 : Résultats de l'ETP

SHATIONS		DORI		OG.	OUAHIGOUYA	4	H	ревора		DUAGAE	OUAGADOUGOU AEI	VERO	FADA	FADA N'GOURMA	4	8	BOROMO		B080-D	BOBO-DIOULASSO	02		2		GAOUA	≜
	Dates de rupture	Test sur le rang	V. R (%)	Dates de rupture	Test sur le rang	V. R (%)	Dates 1 de 1	Test sur le rang	V. R (%)	Dates T de ti	Test sur le rang	Y. R (%)	Dates Tode le	Test sur le rang	7. (%)	Dates Te de le le	Test sur le rang	۰. R (%) رچ	Dates Tes de le upture	Test sur le rang	7. %)	Dates Teg de te	Test sur V.	7. %) (%)	Dates Test sur de le rang	V. R (%)
Janvier	1980	¥ Z	-28,34	1980	¥	-14.87	1973	NA NA	-14,06	1984	Ą V	-13,79	1980	Ą Z	-25,93	1975	¥ ¥	6,01		¥.	-9,71		∢	"	1971 NA	-8,91
Février	1980	¥	-30,34	1973	Ą	-15,30	1972	¥	-15,03	1980	A A	-11,05	1980	₹	-26,10	1973	4 Z	-16,52	1981	¥ _Z	-14,82			3,	1980 NA	-16,27
Mars	1980	¥	-28,93	1973	¥	-15,84	1972	NA.	-13,55	1980	AN A	-11,28	1980	¥ Z	-22.40	1973	₹ V	1-22,21	1980	₹	-10,93		∢	¥	1981 NA	-15,35
Avril	1980	¥.	-20,12	1973	∢	-8,02		∢			4		1980	Ϋ́ X	-11,28		<	_	1972	4 Z	10,98		<	¥ .	1976 NA	5,03
Mai		4		1982	∢	-18,88	1984	∢	31,65	1979	N A	17,15	1984	₹ Ž	13,95	1981	¥	21,84	986	** **	21,46		<	#	1980 NA	26,10
Juin	1968	٧	16,79	1980	∢	19,14	1984	NA	41,60	1980	A.A.	33,87	1984	₹ Z	26,56	1980	₹	35,40	1980	¥ X	-28,12		<	#	1980 NA	44,62
Juillet	1980	٧	20,86	1980	ž	37,22	1980	NA	36,23	1979	NA	35,60	1980	ž	26,66	1980	₩ ¥	39,32	1980	¥.	38,45		¥ Z	+	1980 NA	44,37
Aoút	1976	¥ Ž	12,26	1977	Ą Ą	28,13	1980	ΝΑ	28,24	1977	A A	30,65	1977	¥	11,56	1980	¥ X	29,86	1980	¥	27,16	1	₹	#	1980 NA	27,56
Septembre	1970	Ϋ́	8,89	1979	A A	14,44	1979.	NA	9,93	1979	Ą	12,97	1975	¥ Z	6,49	1979	¥ Z	12,53	1980	¥	9,80		<	=	1979 NA	12,53
Octobre	1980	¥.	-17,83	1973	AA A	-7.83		∀			∢		1981	ž	-9,21		<			<			∢		▼	
Novembre	1980	ž	-24,30		∢		1973	Ϋ́	-9,62	1981	NA	-8,89	1980	¥	-18,09	1966	₹	-13,38 1	1981	₹ Ž	-7,95		⋖	+	1980 NA	96'6
Décembre	1979	¥	-24,67	1974	¥ ¥	-10,84	1970	AN	-15,04	1982	AN	-8,21	1980	A A	-23,67	1976	AN A	-16,68	1980	ΑN	-8,37		Α .	-	1980 NA	-14,47

NA: Non Aléatoiree V.R : Variation Relative

Annexe II.6 : Résultats d'humidité

	2 (%) 2 (%)	33,70			-6,67	-3,46	-3,46			-1,58			25,95
GAOUA	le Test sur le rang	∢	∢	<	<	Y Z	<	<	∢	ž	∢	∢	∢
	Dates de rupture	1992			1975	1981	1969			1977,			1991
	. v. (%)	-14,21											
8	Test sur le rang	∢	∢	<	4	<	∢	<	∢	∢	∢	∢	∢
	Dates de rupture	1992											
oss	V. R (%)	16,06		43,07					1,92				
BOBO-DIOULASSO	Test sur le rang	ΑN	∢	٧	٨	∢	<	₹	₹ Z	ă	∢	∢	∢
вово	Dates de Test sur rupture le rang	1975		1963					1984				
	×. %)					-5,94	-5,36	-2,46	-3,85	-3,67		-10,77	
BOROMO	Test sur le rang	٧	¥	٧	٨	Ą	¥	¥	¥	AN	∢	∢	∢
	Dates de Test sur rupture le rang					1982	1969	1979	1974	1971		1969	
SMA	, % 8, %	-12,73				-17,85	-7,74		-3,41	-3,92	-7,38	-13,70	-12,42
FADA N'GOURMA	Test sur le rang	ΑN	ž	∢	<	¥	ž	¥	¥	₹	¥	₹	₹
FAD.	Dates de nupture	1965				1982	1969		1971	1971	1982	1969	1977
AERO	V. R (%)		-13,05			-7,14		-3,33	-3,00	4,42			-12,31
OUAGADOUGOU	Test sur le rang	٧	¥	4	4	∢	∢	N A	Z Z	N A	4	∢	Ą
OUAGA	Dates de rupture		1983			1984		1981	1976	1979			1978
	V. R (%)								3,50				
DEDOUGOU	Dates de Test sur rupture le rang	٧	4	∢	∢	4	٨	٧	∢	¥	∢	٧	∢
DE	Dates de rupture								1984				
ſΑ	V. R (%)		-23,25	-14.24	-20,63	-14,50		-6,61	-8.88	-8,37	-11,78	-18,58	-27,21
ООАНІВООУА	Test sur le rang	∢	٧	٧	٧	٧	A	NA	¥	NA	٧	NA	Ϋ́
8	Dates de rupture		1983	1982	1983	1982		1981	PR	1979	1979	1980	1978
	V. R (%)		-30,75			-8,92	-9,49	78'9-	97'6-	-8,41	-12,39		
DORI	Test sur le rang	4	٧	¥	٧	NA	Ϋ́	NA	NA	ΝΑ	NA	¥	٩
	Dates de rupture		1996			1982	1969	1980	1971	1977	1970	-	
SKATIONS		Janvier	Février	Mars	Avril	Mai	Juin	Jullet	Août	Septembre	Octobre	Novembre	Décembre

NA: Non Aléatoire V.R.: Variation Relative A: Aléatoire

Réalisé et présenté par: IBRAHIM Boubacar EIER-31^{eme} Promotion Mémoire de fin d'étude Juin 2002

Annexe II.7: Résultats de la pluviométrie mensuelle

GAOUA	Test sur le rang	٨	4	4	∢:	∢	4	∢	٧	∢	4	Ą	4
δ	Dates de Ter rupture le											1963	
									0	9		16	
	V. R (%)								-16,60	-24,35			
8	Test sur le rang	٧	A	٧	∢	٧	4	∢	∢ :	AN	∢	٧	∢
	Dates de rupture								1971	1975			
sso	V. R (%)					46,00			-27,26	-25,55			
BOBO-DIOULASSO	Test sur le rang	4	Ą	4	¥	4	∢	₹ Z	∢	ΑN	∢	∢	∢
8080	Dates de Test sur rupture le rang					1953	·		1957	1970			
	V. R (%)									-28,97			
BOROMO	Test sur te rang	∢	∢	4	∢	4	∢	∢	∢	ΑN	4	٧	∢
B	Dates de Test sur rupture e rang									1969			
₹	V.R [%)								-30,68	-35,80			
FADA N'GOURMA	Test sur le rang	∢	∢	4	∢	<	∢	ž	₹	¥.	∢	∢	∢
FADA	Dates de rupture								1970	1967			
AERO	V. R (%)					-48,41	-28,97	-5,55	-17,34	-28,51	-16,95		
oneon	Test sur le rang	∢	4	4	∢	ž	Ą	AN A	⋖	ΑN	Ϋ́	4	∢
OUAGADOUGOU AERO	Dates de rupture					1957	1972	1972	1977	1979	1977		
	V. R (%)						-26,62	-18,39	-28,53	-31,76			
DEDOUGOU	Test sur le rang	∢ :	∢	∢	∢	∢	∢	∢ .	Ą	NA	¥	A	٧
DE	Dates de Test sur rupture le rang						1971	1971	1967	1970			
V	V. R (%)								-44,11	-28,37			
OUAHIGOUYA	Test sur te rang	٧	4	4	4	∢	٧	∢	∢	NA	4	٧	4
'nο	Dates de Test sur rupture le rang								1975	1967			
	V. R (%)					,	-67,74	-25,09	-30,80	-34,36			
DORI.	Test sur le rang	∢ ,	٧	٨	A	∢	А	NA	NA	NA	٧	¥	4
	Dates de Test sur rupture le rang						1962	1978	1967	1971			
STATIONS		Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre

A: Aléatoire NA:Non Aléatoire V.R : Variation Relative

Mémoire de fin d'études Juin 2002 Réalisé et présenté par. *IBRAHIM* Boubacar EIER-31^{eme} Promotion

Annexe II.8 : Résultats du nombre mensuel des jours de pluie

STATIONS		DORI		OUA	OUAHIGOUYA		DEI	рероисои		OUAGAE	OUAGADOUGOU AERO	AERO	FADA	FADA N'GOURMA	МА	Ω.	BOROMO		BOBO	BOBO-DIOULASSO	sso		РО			GAOUA
	Dates de Test sur rupture le rang	Fest sur le rang	V. R (%)	Dates de rupture	Test sur le rang	X. R (%)	Dates de Test sur rupture le rang	Test sur le rang	× % 8 %	Dates de Test rupture le ra	Test sur le rang	V. R (%)	Dates de Test sur rupture le rang	Test sur le rang	×.%	Dates de Test sur rupture le rang		V. R (%)	Dates de Test sur rupture le rang	Test sur le rang	V. R (%)	Dates de Test sur rupture le rang	Test sur le rang	V. R (%)	Dates de Test sur rupture le rang	Test sur le rang
Janvier		∢			∢		-	∢			<			<			∢			∢			∢			4
Février		٧			4			4			∢			<			4			∢			ž			AN
Mars		٧			4			<			∢			<			<			∢			ĄZ			٧
Avril		٧			∢			<			<			4			<			∢			Ą			4
Maŝ		4			∢			∢	,	-	<			<			<			∢		1981	ž	91,46		∢
Juin	1967	N A	-28,62		₹ Ž			∢			4		1979	ž	-16,01	1979	<u>₹</u>	-15,5821	1970	A Z	-12,72		¥			∢
Juillet	1975	∢	-15,57		ž			¥ Z			<			∢			<			4		1984	ď Z	86,68		٧
Août	1965	ΑΝ	-25,1		ž			¥		1971	₹ Ž	-16,692	1970	¥	-18,26	1971	<	-10,4607		∢		1982	¥.	87,03		∢
Septembre		٧	:	,	٧			∢		1969	₹	-22,00	1979	ž	-29,88	1969	ş	-20,77	1968	ž	-15,11		Ą		1970	٧N
Octobre		٧			Ą			Ą			∢			∢			∢		1957	¥ ¥	45,1		۸۸			٧
Novembre		4			N.A			Ą Ž			∢			∢			∢		1962	∢	86'99-		NA			∢
Décembre		∢			4			∢			∢			∢			∢			∢			٧			∢

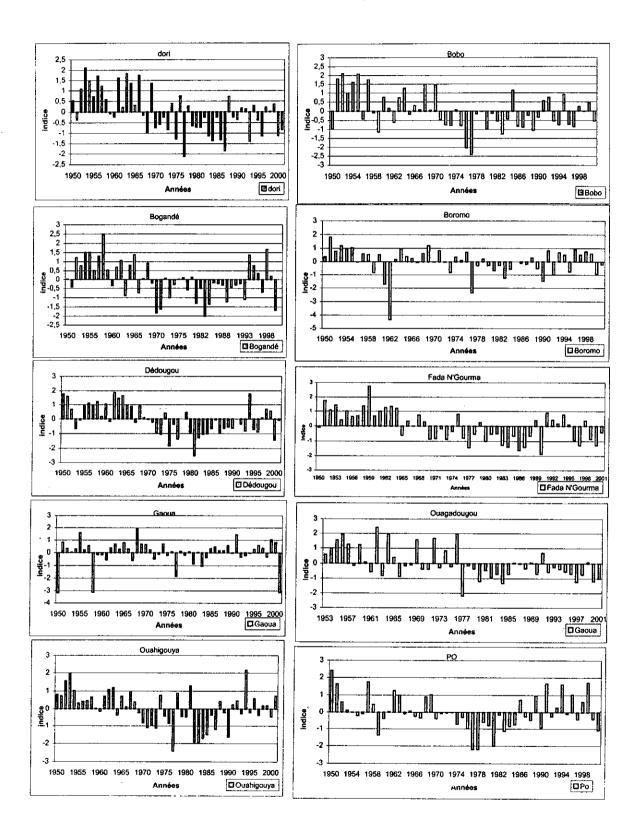
A: Aléatoire NA: Non Aléatoire V.R : Variation Relative

Mémoire de fin d'études Juin 2002

Annexe II.9 : Résultats des données annuelles

STATIONS	<u>а</u> .	Pluie annuelle		Nbre annuel de jours de pluie	l de jours c	de pluie	Class	Classe 1 (0-2mm)		Classe	Classe 2 (2-10mm)	Ê	Class	Classe 3 (10-20 mm)	(mi	Classe	Classe 4 (20mm à pius)	pius)
	Dates de rupture	Test sur le rang	V. R (%)	Dates de rupture	Test sur le rang	S. S.	Dates de rupture	Test sur le rang	V. R (%)	Dates de rupture	Test sur le rang	x .%)	Dates de rupture	Test sur le rang	×. %)	Dates de rupture	Test sur le rang	V. R (%)
DORI	1969	NA	-28,36	1969	ž	-19,22	1969	¥	3,10	1970	¥	-29,30	1970	<	62'02	1966	ΑĀ	-36,52
OUAHIGOUY A	1968	NA	-27,72	1961	Ą	6,29	1969	Ą	1,67		∢			4		1967	A N	-29,20
BOGANDE	1968	ΑΝ	-18,36	1972	NA	86'6-	1964	AZ AZ	2,52	1972	A A	-19,41	1962	4	-19,74	1965	A N	-17.71-
DEDOUGOU	1970	ΑN	-23,11	1987	Ą	17,77	1968	ΑŽ	2,35		Ä			4		1971	ΑŽ	-25,85
OUAGA	1976	Ϋ́	-22,03	1969	₹	-11,30	1970	NA A	2,04		4			4		1978	A A	-27,00
FADA N'GOURMA	1969	NA	-22,23	1979	Ą	-12,49	1969	¥.	3,06	1963	₹	-22,73		4		1969	A Z	-27,94
ВОКОМО	1971	₹ Z	-8,83	1969	Ą Z	-11,56	1969	¥	2,63	1968	Ą	-16,62	1980	4	-19,99		4	
BOBO- DIOULASSO	1970	ΝΑ	-20,05	1968	NA	-10,13	1970	Ą	3,27	1968	¥	-14,31		4			4	
РО	1973	ΑN	-27,64	1981	₹	27,28		∢			4			A			4	
GAOUA	1958	٨	10,33	1978	ž	-8,74	1975	NA	2,82	1974	AN.	-20,10		4			∢	

A: Aléatoire NA: Non Aléatoire V.R : Variation Relative


Tableau de synthèse des périodes de ruptures et de tendance

Paramètre	Période de rupture	Tendance
	1954-1957	Hausse
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1960-1963	Hausse
INSOLATION	1965-1972	Hausse
	1982-1984	Baisse (SS)
	1957-1964	Baisse (SS)
TEMPERATURE MAXIMALE	1967-1971	Hausse (SP)
	1973-1982	Hausse (SP); Baisse (SS)
TEMPERATURE MOYENNE	1967-1971	Hausse
TEMPERATURE MOTERINE	1976-1982	Hausse
	1966-1968	Hausse
TEMPERATURE MINIMALE	1970-1971	Hausse
	1975-1982	Hausse
ETP	1971-1974	Baisse (SS)
EIF	1977-1982	Hausse (SP); Baisse (SS)
HUMIDITE	1968-1971	Baisse
HOWIBITE	1975-1984	Baisse
PLUVIOMETRIE ANNUELLE	1968-1971	Baisse
PLUVIOMETRIE MENSUELLE	1967-1970	Baisse
PLOVIONE! RIE MENSOELLE	1975-1979	Baisse
NBRE ANNUEL DE JOURS DE	1965-1971	Baisse
PLUIE	1975-1982	Baisse
NBRE MENSUEL DE JOURS	1965-1971	Baisse
DE PLUIE	1975-1982	Baisse
CLASSE DU NOMBRE DE JOURS DE PLUIE	(1966-1971	Baisse

Hausse (SP): tendance à la hausse pendant la saison des pluies Baisse (SS) : tendance à la baisse pendant la saison sèche

Annexe III: Résultats des indices pluviométriques Mémoire de fin d'études Juin 2002	ANALYSE DE LA VARIABILITE CLIMATIQUE AU BURKINA FASO AU COURS DE LA SECONDE MOITIE DU 20em	SIECLE.
	Anneve III: Résultats des indices pluviométriques	
Mémoire de fin d'études Juin 2002	Affilexe III. Tresultate des indices platfornouiques	
Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Mémoire de fin d'études Mémoire de fin d'études Mémoire de fin d'études		
Mémoire de fin d'études Mémoire de fin d'études Mémoire de fin d'études Mémoire de fin d'études		
Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
84 Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
84 Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
84 Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
Mémoire de fin d'études Juin 2002		
	Mémoire de fin d'études Juin 2002	 84

Annexe IV: Résultats de la loi des fuites et le modèle

- durée inconnue Durke inconn 25-oct 6-nov 25-sept 6-sept 25-août LAMBDA (DORI après 1970) Mu(mm) (après 1970) 25-juil jours jours 25-juin Annexe I¥.1: Paramètres de la loi des fuites à la station de DORI 6-mai 25-mai 25-avr 8'0 2,0 9,0 0,5 0,4 0,2 22 2 8 1 4 1 1 2 8 8 Durée inconnue 25-sept 25-oct -- Durée≖1 h — Durée=1 h 25-août 6-sept LAMBDA (DORI avant 1970) MU(mm) (DOR! avant 1970) 25-juil 6-juil jours Jours 25-juin 6-mai 25-mai 6-тал 25-avr 25-mars 0,0 6,0 6,0 6,0 6,0 7,0 6,0 7,0 7,0 7 7 5 8 9

Mémoire de fin d'études Juin 2002 réalisé et présenté par: *IBRAHIM* Boubacar EIER-31^{ème} Promotion

- - - - Durée inconnue - Durée=1 h 6-100 LAMBDA (OUAHYGOUYA après 1970) 6-sept MU(mm) (OUAHIGOUYA après 1970) 6-juil ours 6-mai 6-janv 0.7 0,5 0,3 0,2 4,0 ø 12 00 · · · · Durée inconnue - Durée≖1 h 6-nov 6-sept LAMBDA(OUAHYGOUYA avant 1970) MU(mm) (OUAHIGOUYA avant 1970) 6-juil Jours 6-mai 6-mars 6-janv 0,8 0,5 0,4 0,3 0,2 86440080400

Annexe III.2: Paramètres de la loi des fuites à la station de OUAHIGOUYA

Mémoire de fin d'études Juin 2002 Réalisé et présenté par: I*BRAHIM* Boubacar EIER-31^{em} Promotion

· · · · · Durée inconnue

25-oct

25-sept

25-août

25-juil

25-juin

25-mai

25-mars

25-oct

25-sept

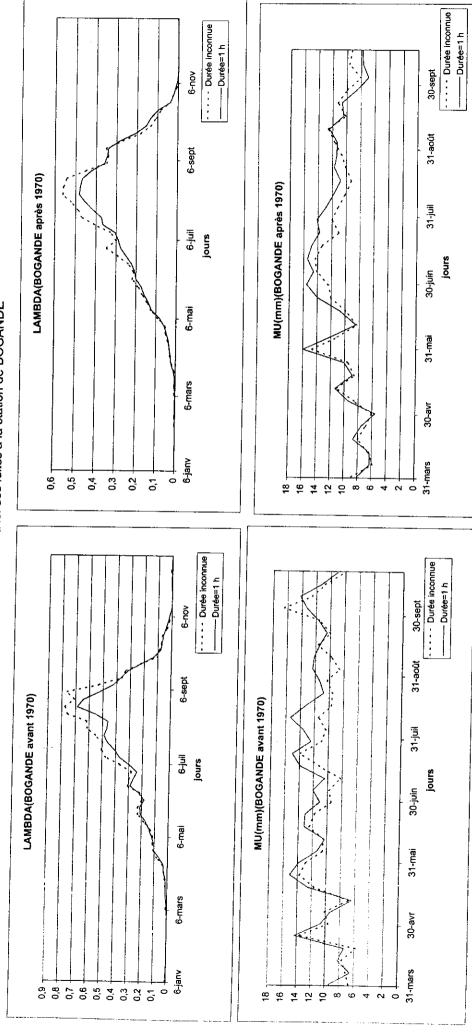
25-août

25-juii

25-juin

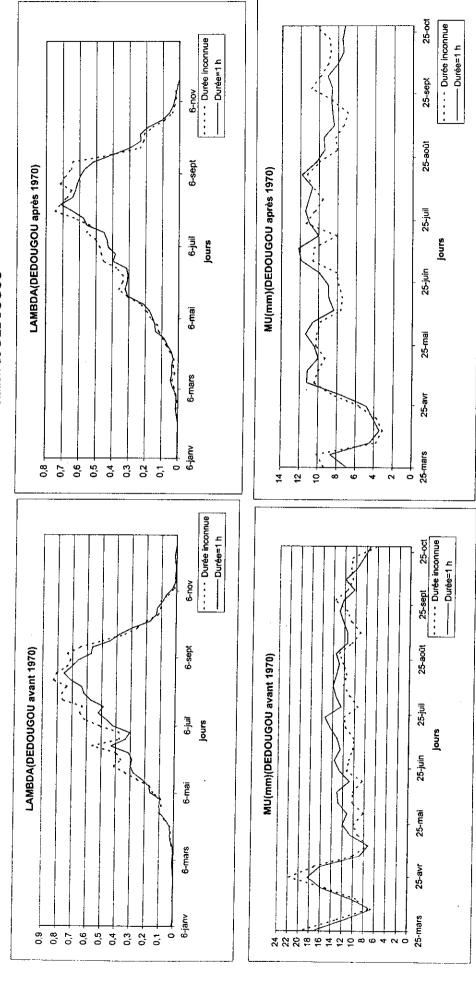
25-mai

25-avr

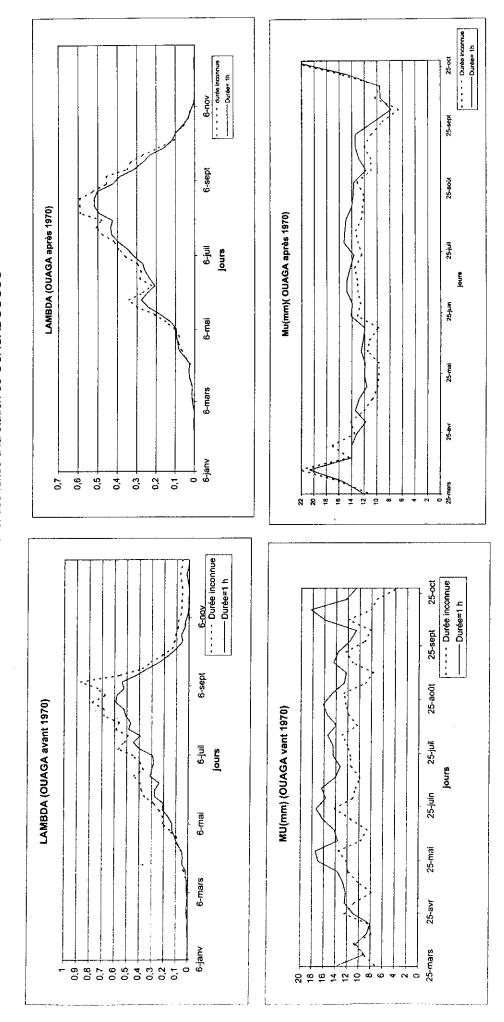

jours

. Durée inconnue

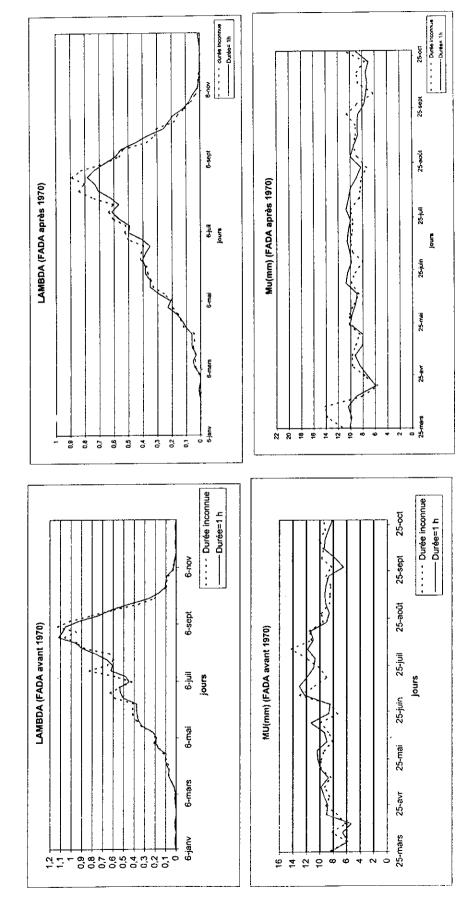
— Durée=1 h


Jours

Annexe III.3 : Paramètres de la loi des fuites à la station de BOGANDE


Mémoire de fin d'études Juin 2002 Réalisé et présenté par: *IBRAHIM* Boubacar EIER-31^{éme} Promotion

Annexe i 1/4 : Paramètres de la loi des fuites à la station de DEDOUGOU


Réalisé et présenté par: IBRAHIM Boubacar EIER-316me Promotion Mémoire de fin d'études Juin 2002

Annexe IV.5: Paramètres de la loi des fuites à la station de OUAGADOUGOU

Mémoire de fin d'études Juin 2002 Réalisé et présenté par. *IBRAHIM* Boubacar EIER-31^{éme} Promotion

Annexe III.6: Paramètres de la loi des fuites à la station de FADA N'GOURMA

Mémoire de fin d'études Juin 2002 Réalisé et présenté par: *IBRAHIM* Boubacar EIER-31^{eme} Promotion

- - - durke inconnue 6-sept LAMBDA(BOROMO après 1970) Mu(mm)(BOROMO après 1970) 6-jull 6-mai 0.9 · · · · · durée inconnue – durée=1 h 6-sept LAMBDA(BOROMO avant 1970) Mu(mm)(BOROMO avant 1970) 25-Jul 6-juil 25-July 6-mai 25-mail 6-mars 2

Annexe IN.7: Paramètres de la loi des fuites à la station de BOROMO

Réalisé et présenté par. IBRAHIM Boubacar EIER-31eme Promotion Mémoire de fin d'études Juin 2002

Durke th

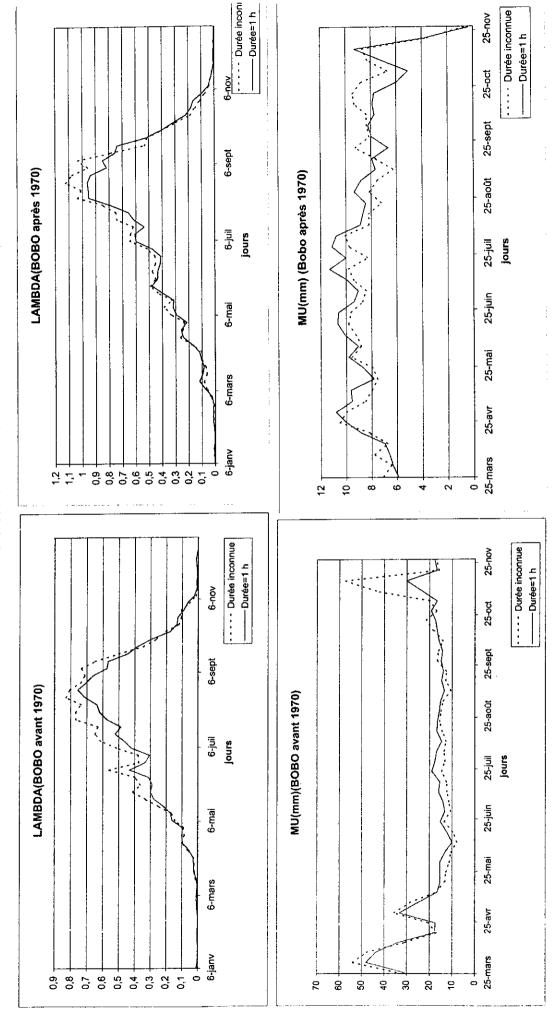
25-oct

25-sept

25-août

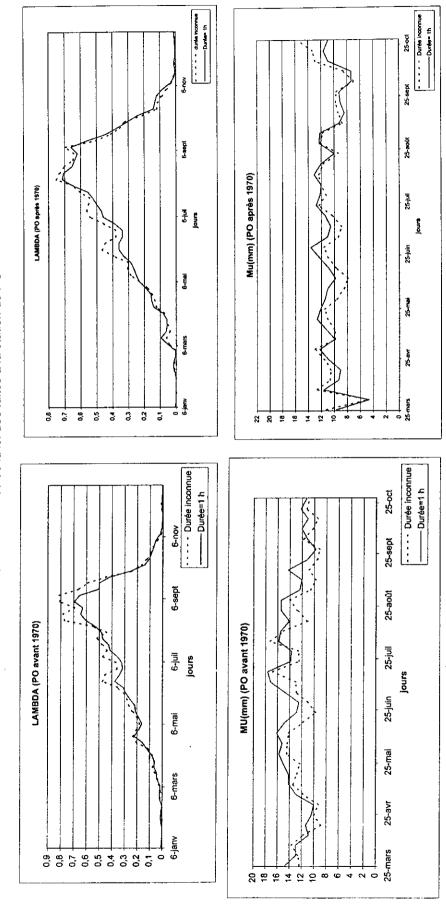
25.7<u>c</u>

25-juin

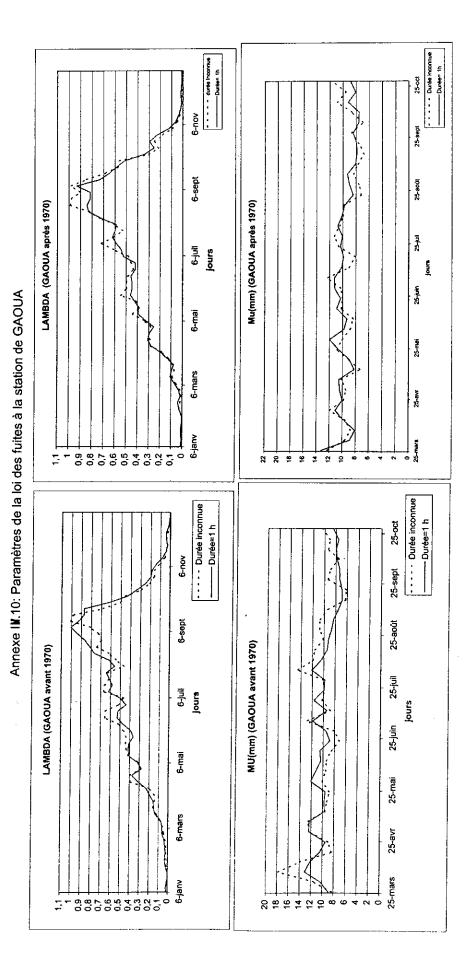

25-mai

25-avr

· · · · durée inconnue


-durée=1 h

Annexe IV.8 : Paramètres de la loi des fuites à la station de BOBO DIOULASSO



Mémoire de fin d'études Juin 2002 Réalisé et présenté par: IBRAHIM Boubacar EIER-31^{eme} Promotion

Annnexe III.9: Paramètres de la loi des fuites à la station de PO

Mémoire de fin d'études Juin 2002 Réalisé et présenté par: *IBRAHIM* Boubacar EIER-31^{éme} Promotion

Mémoire de fin d'études Juin 2002 Réalisé ét présenté par: *IBRAHIM* Boubacar EIER-31^{èms} Promotion

Annexe IV-11: Modèle de description du régime pluviométrique

LES HYPOTHESES DE BASE

Le modèle repose sur les hypothèses de la loi des fuites qui a été utilisé et validée pour décrire les régimes mensuels des pluies en Afrique de l'Ouest. Elles sont au nombre de trois :

- > Le processus des occurrences est sans mémoire
- Les hauteurs par événement suivent une loi exponentielle
- Les processus d'occurrences et d'abondances des évènements sont indépendants

FORMULATION MATHEMATIQUE

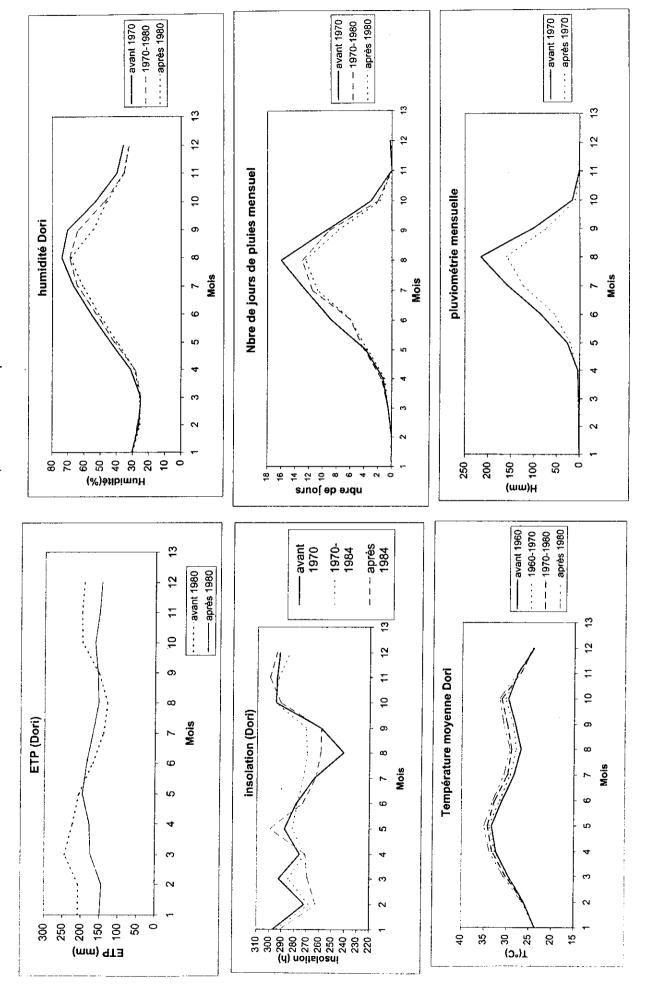
En définitive le modèle proposé est défini par deux vecteurs de 365 valeurs précisant les paramètres des distributions journalières des nombres et des hauteurs d'évènements, dont les formulations et les principales caractéristiques sont résumés dans le tableau

Variable	Expression (Probabilité ou densité)	Espérance	Variance
Nombre, n, d'évènements au jour j (Loi de poisson)	Prob(n)= $\frac{Exp(-\lambda_j).\lambda_j^n}{n!}$	λ_i	λ_i
Hauteur, c, d'évènements au jour j (Loi Exponentielle)	$C(c) = Exp(-\frac{c}{\mu_j}) \cdot \frac{dc}{\mu_j}$	$\mu_{_{j}}$	μ_j^2

LES INFERENCES

En supposant connus ses paramètres, ce modèle permet de générer des chroniques pluviométriques évènementielles et donc de fournir de façon expérimentale la plupart des distributions classiquement utilisées : cumuls journaliers ou pluri-journaliers, datés ou non, valeurs extrêmes, etc....

Ce type de modèle est de la famille des modèles développés fans l'étude de la théorie du renouvellement. Son application à la pluviométrie a fait également l'objet de nombreux travaux (Babuziaux, 1969; Ribstein, 1983; Le Barbé, 1985) qui permettent de préciser analytiquement les distributions d'un grand nombre de descripteurs de la pluviométrie. Nous avons résumé les principales caractéristiques d'un certain nombre d'entre elles.


	Expression	Espérance
Variable, (nom de la loi)	Probabilité ou densité	Variance
Nombre, n, d'évènements entre	$\Pr o(n) = \frac{Exp(-\Lambda). \bigwedge^{n}}{n!}$	Λ
deux dates J1, J2 (Loi de poisson)	$\Lambda = \sum_{j1}^{j2} \lambda_j$	Λ
le nombre de jours	Pro(n Np)= $\frac{Exp(-Np.\lambda).(Np.\lambda)^{n}}{n!(1-Exp(-\lambda))^{Np}}.\Phi$	$\frac{Np.\lambda}{1 - Exp(-\lambda)}$
pluvieux Np. λ et μ constants	$\Phi = \sum_{0}^{Np} \left(\frac{i}{Np}\right)^{n} \cdot \left(-1\right)^{Np-i} \cdot \frac{Np!}{(Np-i)! i!}$	$\frac{Np.\lambda}{1 - Exp(-\lambda)} \left(1 - \frac{\lambda}{Exp(\lambda) - 1}\right)$
Cumul, c de Nv évènements (loi de Erlang)	$I(c) = \frac{1}{(Nv-1)!} \cdot \left(\frac{c}{\mu}\right)^{Nv-1} \cdot Exp(-\frac{c}{\mu}) \cdot \frac{dc}{\mu}$	Nv.μ Nv.μ²
Cumul, c, entre deux dates J1, J2 (Loi des fuites) μ constant	$Prob(c = 0) = Exp(-\Lambda)$ $q(c) = \sum_{i=1}^{j_2} \frac{Exp(-\Lambda) \cdot \Lambda^{i} \cdot c^{i-1}}{i!(i-1)! \mu^{i}} \cdot Exp(-\frac{c}{\mu}) \cdot dc$ $\Lambda = \sum_{j_2}^{j_2} \lambda_{j}$	Λ <i>μ</i> 2.Λ. <i>μ</i> ²
Cumul, c, sachant le nombre de jours pluvieux Np. λ et μ constants	$r(c) = \sum_{i=1}^{\infty} \Pr o(i Np) \cdot \frac{c^{i-1} \cdot Exp(-\frac{c}{\mu})}{(i-1)! \cdot \mu} \cdot dc$	$\frac{Np.\lambda.\mu.}{1 - Exp(-\lambda)}$ $\frac{Np.\lambda.\mu^{2}}{1 - Exp(-\lambda)}.(2 - \frac{\lambda}{Exp(\lambda)})$
(loi de GUMBEL	$Prob(hx < 0) = 0$ $Prob(h > hx) = Exp(-\Lambda . Exp(-\frac{hx}{\mu}))$ $\Lambda = \sum_{j_1}^{j_2} \lambda_j$	

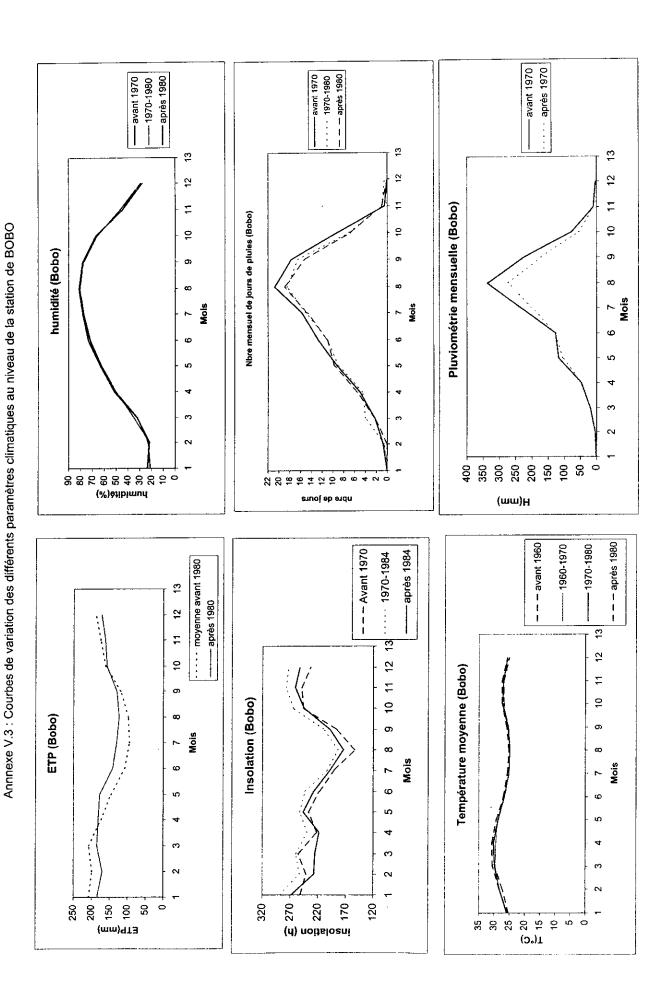
Expressions, moyennes et variances, des distributions de certains descripteurs des régimes pluviométriques

Annexe V:	Courbes de variation des différents paramètres climatiques au cours de l'année

ANALYSE DE LA VARIABILITE CLIMATIQUE AU BURKINA FASO AU COURS DE LA SECONDE MOITIE DU 20ºme SIECLE.

Annexe V.1: Courbes de variation des paramètres climatiques à la station de Dori

Mémoire de fin d'études Juin 2002 Réalisé et présenté par : IBRAHIM Boubacar EIER-31⁴™ Promotion


----- 1970-1980 -avant 1970 après 1970 -avant 1970 -avant 1970 — — après 1980 . . . 1970-1980 5 2 Nbre mensuel de jours de pluies (Ouaga) 42 Annexe V.2: Courbes de variation des différents paramètres climatiques à la station de OUAGADOUGOU Pluviométrie mensuelle (Ouaga) = Humidité mensuelle (Ouaga) 6 6 ٥ Mois 7 mois ø G 8 8 6 4 4 5 8 8 (%)H 8 8 5 8 3 4 8 8 5 0 nbre de Jours 8 250 Š 5 (ww)H --- avant 1960 - 1970-1980 après 1980 - 1960-1970 - -- event 1970 5 -- après 1980 2 ---- avant 1980 5 Ξ 42 9 2 température moyenne (Ouega) o Insolation mensuelle (Duaga) ETP (Ouaga) Mois Φ ~ 튙 Mole ဖ S _G 3 ETP(mm)

ETP(mm)

ETP(mm) S S (p.) dwe; ä 8 210 2,0 8

Mémoire de fin d'études Juin 2002 Réalisé et présenté par : *IBRAHIM* Boubacar EIER-31^{éme} Promotion

THE THE PLANT OF THE TWO WAS AND THE TOTAL OF THE SECONDE MOTTIE DU 20 STECLE.

Mémoire de fin d'études Juin 2002 Réalisé et présenté par : *IBRAHIM* Boubacar EIER-31^{6me} Promotion

Annexe VI: Données pluviométriques

Tableau : Pluviométrie annuelle

															46.66.014	_
STATION	1950:1954	1955:1959	1960:1964	1965:1969	1970:1974	1975:1979	1980:1984	1985:1989	1990:1994	1995:1997	1998:2001	Moyenne avant 1970	Moyenne après 1970	variation r. (%)	(mm)	Déficit(%)
ā	8316	614	630.9	564.8	451	423.6	393,6	426,2	473,9	479,9	375,45	610,33	431,95	-29,23	-178,38	-29,23
NOO IN	2-100	700.8	717.6	201.2	548	548.8	504.3	559,3	672,9	655,7.	664,85	736,40	593,41	-19,42	-142,99	-19,42
CUANIGOOTA	020	0,007	8783	679	526.7	633.7	484.7	561.5	627	701,5	538,95	720,25	582,01	-19,19	-138,24	-19,19
BOGANDE	4,77,4	003,0	4027.3	916.7	765.5	720	595	729,2	826,1	816,7	696,2	964,78	735,53	-23,76	-229,25	-23,76
OUAGADOUGOU	939,0	0,018	888	816.7	837	757	637,5	757	750,7	686,8	607,95	900,18	719,14	-20,11	-181,04	-20,11
AERO	216	ר בי סיים	o'ooo		0 01	0420	740.0	7/2 5	870.2	786.1	733.55	1005.98	778.12	-22,65	-227,85	-22,65
FADA N'GOURMA	1014,8	1074,1	1043,5	G, F88	9'0//	013,9	0,617	062.0	964 5	965.5	768 15	927.35	848.42	-8,51	-78,93	-8,51
BOROMO	1088,5	935,1	706,2	9/6/6	696,3	4,010	7,507	902,3	2,400	2000	5				0,0	1
BOBO-DIOULASSO	1323,4	1167,7	1174,2	1148,4	1046,9	821	915,8	983,9	1054,8	1048	1057,7	1203,43	989,73	-17,76	-213,(0	-۱٬٬۱۵
C	1138 F	966.8	1018 6	1002.6	968	692.6	747,2	954,9	1040,7	1059,2	795,5	1031,13	883,73	-14,29	-147,40	-14,29
2	0,00,1	0,000	0 0	2100	1070	00 5	8 800	11124	1063.7	11286	680.2	1030.48	977,30	-5,16	-53,18	-5,16
GAOUA	916,3	960,3	1050,6	1184,/	10/2,1	6,080	0,000	1 1 1 1 1	1,000							

Tableau : Nombre de jours de pluie annuelle

MOJULIUM MOJULIUM													Occupied in	- ouronous	Daffeit %)	Déficit(%)
59 55 66 67 46 47 46 50 56 47 44 -15.32 58 44 57 66 66 61 54 56 62 59 56 69 56 400 57 400 57 600 56 40 <	STATION	1950:1954	1955:1959	1960:1964	1965:1969	1970:1974	1975:1979	1980:1984	1985:1989	1990:1994	1995:1999	woyenne vant 1970	1970:1980	après 1980	1970	1980
58 44 57 66 61 54 56 62 59 56 69 58 4,00 49 53 66 67 65 49 46 43 6,50 7 49 57 68 64 67 67 67 66 67 67 67 6,61 75 68 67 73 73 73 79 66 69 75 70 67 68 7,81 92 86 86 73 74 80 82 87 79 70 71 70	ā	g		56	52	46	48	38	41	46	20	56	47	44	-15,32	-6,91
30 46 46 48 37 39 42 55 49 46 48 48 46 48 37 49 46 64 64 64 60 65 -6.61 7 57 68 68 74 64 63 70 71 77 70 67 8.78	200	65	3	27	99	56	61	22	56	62	59	99	59	58	4,00	-1,28
43 35 36 47 67 67 63 62 71 74 64 66 63 71 74 64 65 62 71 77 70 67 67 661 87 86 86 87 87 86 87 87 86 96 96 97	DAHIGOUTA	000	\$ 53	5 4	38	94	48	37	39	42	55	49	46	43	-6,50	-6,87
57 68 68 74 66 74 64 63 70 71 77 70 67 -8.78	BOGANDE	64	3	3 8	2		2 69		62	7.1	74	64	09	65	-6,61	8,33
75 79 79 74 66 74 64 63 70 71 77 70 71 77 79 67 63 65 69 75 79 76 68 75 79 76 68 73 77 710.03 92 86 89 75 86 88 78 81 91 96 87 86 -9.61 60 54 67 67 63 63 76 84 63 57 75 -9.60 91 99 95 102 93 92 84 88 87 90 97 93 87 -9.60	EDOUGOU	5/	200	8	\$	à	3	3	3			ţ	20	23	878	4 15
78 81 84 73 73 79 63 66 69 75 79 76 68 -3.80 92 86 82 82 70 74 80 82 87 79 77 -10.03 102 98 93 92 86 88 78 81 91 96 87 86 -9.61 60 54 67 63 63 67 75 -9.60 91 99 95 102 93 92 84 88 87 90 97 93 87 -4.39	OLIAGA	75	62	7.9	7.4	99	74	2	83	0/		;	2	5	210	
70 81 82 75 82 70 74 80 82 87 77 -10,03 102 86 86 88 78 85 91 96 87 86 -9,61 60 54 67 69 60 53 63 76 84 63 57 75 -9,60 91 99 95 102 93 92 84 88 87 90 97 93 87 -4,39	10000	100	*0	70	7.3	73	79	63	99	69	75	79	9/	68	-3,80	07'0L-
92 86 82 75 84 70 74 90 91 96 87 86 961 102 98 93 92 86 88 78 85 91 91 96 87 86 961 60 54 69 60 63 63 76 76 75 75 960 91 99 95 102 93 92 84 88 87 90 97 93 87 4,39	A N'GOURMA	0	0	5	2	2	2	Š	-	6	S	78	62	77	-10.03	-2,55
102 98 93 92 86 78 85 91 96 87 86 -9,61 60 54 63 63 76 76 84 63 57 75 -9,60 91 99 95 102 93 92 84 88 87 90 97 93 87 4,39	BOROMO	85	98	82	89	75	28	2	ţ	8	70	5	2			
60 54 67 69 60 63 63 76 76 84 63 67 75 75 90 97 93 87 4,39 91 99 95 102 93 87 88 87 90 97 93 87 -4,39	O-DIOULASSO		86	93	92	98	88	78	82	91	9	96	87	98	-9,61	98'0-
91 99 95 102 93 92 84 88 87 90 97 93 87 4,39			2	67	69	09	53	63	92	9/	84	63	57	22	-9,60	32,30
88 and 102 and 188 line	2	3 3	5 8	5	102	83	6	84	88	87	06	97	93	87	4,39	-5,68
	GAOUA	5	88	66	701	35	45	,	3							

ШШ
a
Ħ
ō
ø
Ħ
Ð
nise
2
8
es
₽
ē
ğ
30
=
ร
5
'n
ū
5
Ξ
3
0
Ď
3
3
í
2
-
:

		-								_
Déficit(%)	3'05	1,50	2,04	2,13	2,04	2,87	2,47	3,27	1,11	2,60
Moyenne après 1970	336	324	327	316	317	314	309	303	311	301
Moyenne avant 1970	326	320	321	310	310	306	302	293	307	293
1995:1999	332	322	321	312	316	311	307	302	305	299
1990:1994	335	319	328	316	315	313	308	300	310	303
1985:1989	339	329	331	317	318	317	309	303	308	301
1980:1984	340	328	335	324	320	319	314	309	314	308
1975:1979	332	320	324	315	313	312	304	297	317	298
1970:1974	335	328	328	316	317	314	311	301	309	296
1965:1969	328	320	325	309	313	311	302	295	306	290
1960:1964	324	317	321	309	309	303	305	296	303	297
1955:1959 1960:1964	326	323	317	307	310	304	302	294	313	292
STATION	DORI	OUAHIGOUYA	BOGANDE	DEDOUGOU	OUAGADOUGOU AERO	FADA N'GOURMA	BOROMO	BOBO-DIOULASSO	PO	GAOUA

Tableau : Nombre de pluies journalières dont la hauteur est comprise entre 2 et 10 mm

STATION	1950:1954	1955:1959 1960	1960:1964	1965:1969	1970:1974	1975:1979	1980:1984	1985:1989	1990:1994	1995:1999	Moyenne avant 1970	Moyenne après 1970	Déficit(%)
OUA 3ADOUGOU AERO	27	24	56	24	21	25	24	22	26	24	25	23	-6,79
DORI	21	18	22	20	14	16	13	12	15	16	20	14	-29,30
OUAHIGOUYA	20	19	24	22	18	25	12	16	24	21	21	21	-2,85
DEDOUGOU	24	26	23	54	24	53	19	22	. 23	25	24	23	-5,73
BOGANDE	22	21	21	18	19	12	11	14	15	21	21	17	-17,05
FADA N'GOURMA	32	29	72	22	27	54	19	23	23	27	28	24	-14,43
BOBO-DIOULASSO	35	35	30	32	87	31	24	30	59	29	33	58	-12,20
BOROMO	33	53	62	32	23	28	22	56	29	26	31	26	-14,43
O	22	17	27	24	23	23	56	23	22	27	23	24	5,79
GAOUA	æ	35	32	37	36	31	25	56	59	59	34	53	-15,65

1950:1954	1955:1959 1960	1960:1964	1965:1969	1970:1974	1975:1979	1980:1984	1985:1989	1990:1994	1995:1999	Moyenne avant 1970	Moyenne après 1970	Déficit(%)
41	13	15	15	13	12	12	11	13	15	15	13	-12,32
6	6	8	80	6	10	9	7	7	10	6	8	-6,25
4	9	13	12	10	13	8	11	13	10	12	11	90'8-
13	15	13	15	12	15	12	13	12	15	14	13	4,83
11	13	12	10	10	10	6	. 6	10	10	12	10	-14,91
14	13	16	16	11	16	16	13	15	14	14	14	-1,08
21	16	18	18	17	20	14	16	16	17	19	16	-14,78
19	19	19	16	16	19	13	14	15	15	18	15	-13,77
14	16	17	18	17	14	14	17	16	14	16	15	-8,04
19	18	18	19	17	19	17	17	16	20	19	18	4,96
	14 11 11 11 11 11 11 11 11 11 11 11 11 1		13 10 10 15 13 11 16 19 18	13 15 15 1 10 10 13 11 12 11 16 11 18 18	13 15 15 15 15 15 15 16 10 13 15 10 10 10 10 10 10 10 10 10 10 10 10 10	13 15 15 13 9 8 8 9 10 13 12 10 15 13 15 12 13 12 10 10 13 16 16 11 16 18 17 16 19 17 18 17 18 18 17 18 18 18 17	13 15 15 13 12 9 8 8 9 10 10 13 12 10 13 15 13 15 12 15 13 12 10 10 10 13 16 16 11 16 16 19 16 16 19 16 17 18 17 14 18 18 17 14 14	13 15 15 13 12 12 12 9 8 9 10 6 6 10 13 12 10 13 8 8 15 13 15 12 12 12 12 12 13 12 10 10 10 9 16 16 16 16 16 16 16 14 16 14	13 15 15 13 12 12 11 12 11<	13 15 15 13 12 12 11 13 9 8 8 9 10 6 7 7 10 13 12 10 13 8 11 13 15 13 12 12 15 12 13 12 13 15 10 10 9 9 10 10 14 16 16 11 16 16 16 16 19 19 16 16 16 16 16 16 19 17 16 17 14 15 16 16 18 18 17 14 17 16 16 16	13 15 15 13 12 12 11 13 15 15 15 15 15 15 15 16 17 13 15 10<	13 15 15 13 12 12 11 13 15 15 16 16 17 13 15 16 16 17 17 17 16 9 10 13 12 12 15 12 13 12 14

TATATO .	4000.000	1 1 1 1											
פופוס	1950:1954	1955:1959	1960:1964	1965:1969	1970:1974	1975:1979	1980:1984	1985:1989	1990-1994	1995-1999	Moyenne	Moyenne	
OUAGADOUGOU	16	9	,						1000	233. 333	avant 1970	après 1970	Deficit(%)
AERO	0	2	£	4	4	16	5	44	12	\$. 4	.,	,
DORI	-	11	12	a		٥	,			2	2	2	ې
VA COUNTY	;		!!!	ì		0	٥	, ,	ထ		F	7	4
¥100011000	*	4	12	_	6	œ	σ	0	ç	ç	3		
DEDOUGOU	17	18	8	ŗ	٤		,	,	2	7	13	10	ņ
		?	23	<u>`</u>	13	13	7	7	4	13	48	5	1
BOGANDE	<u></u>	13	12	1	8					?	2	2	ņ
FADA N'COLIDINA	1,7	Ş							15	52	12	=	-2
Vision		6	5	9	13	4	-	13	14	72	ę	,	
0004 11010 0000			•						:	2	0	13	ιĊ
BUBU-DIOULASSO	22	<u>6</u>	20	20	19	17	8	9	20	17	20	8,	,
BOROMO	15	ή.	13	ļ	,							2	7-
	2	2	2	<u>o</u>	16	15	13	16	7	17	Ť,	ŭ	
8	22	49	ά	1.	Ş					:	2	2	>
			2	=	2	12	12	16	17	5	ą	40	,
GAOUA	19	21	19	19	17	17	1	5			2	2	4
						-	<u>:</u>	77	-	<u>~</u>	2	18	-2

Tabelau : Nombre de jour de pluie dans la saison INRA

1													
STATION	1950:1954	1950:1954 1955:1959 1960:1964	1960:1964	1965:1969	1970:1974	1975:1979	1980:1984	1985:1989	1990-1997	1006:4000	Moyenne	Movenne	
OUAGADOUGOU									1000.1004	1990:1899	avant 1970	après 1970	Deficit(%)
AERO	62	. 67	85.	57	25	61	Ŗ	20	55	22	č	23	i,
DOR	50	46	42	38	23	ļ				;	3	3	8/01-
\$ 1000 A				3	2	ငင	56	27	<u>8</u>	32	4	31	-28.22
Y LOOP LUCO	40	33	4	20	42	49	39	40	53	,	,		77
DEDOUGOU	43	25	57	7.7	42	5		,	3	?	43	44	2,48
1024000	3		5	5	4.2	25	43	S S	88	Ŗ	25	50	3.76
בות הסטים	339	42	37	34	36	40	ģ	ę	,	,		3	2
FADA N'GOURMA	70	99	67	2	5		3	6.2	-	41	35	35	4,7
			,	5	20	29	47	72	23	62	99	55	15.00
BOBO-DIOULASSO	85	98	78	73	20	7	8	7.	4	æ	8	3 6	70.0
BOROMO	82	73	8	7.5	1				?	8	70	7)	-12,96
1		2	3	c,	99	72	28	88	99	22	73	3	5 5
Ы	48	88	\$	51	48	40	14	S	1	! ;	2	5	-12,03
AN IN	à	5	ļ			,	-	ŝ	20	9	84	22	15,64
	5	ŝ	9/	89	80	75	69	73	16	77	7,4	7,5	,
											:	5	P.

Tableau : Nombre de jour de pfuie daans la sason, méthode L'aour

CTATION													
SIATION	1950:1954	1955:1959	1960:1964	1965:1969	1970:1974	1975:1979	1980:1984	1985:1989	1990:1994	1995-1999	Moyenne	Moyenne	
OUAGADOUGOU										.000.1000	avant 1970	après 1970	Deficit(%)
AERO		145	142	133	126	146	150	124	133	113		20.7	
DORI	120	113	106	106	0.7	10,				2	1	10	-1,24
				3	ò	/01	87	23	95	8	109	88	-18.53
COAMIGOUYA	106	106	112	118	107	132	114	2	133		,		2
DEDOUGOU	14.4	525	į					3	121	2	109	13	339
		123	141	140	105	5	138	123	133	123	5	1	
BOGANDE	119	112	80	70	,,,				3	3	67.	128	-1.16
			3	36	177			88	102	102	105	104	1,70
FADA N'GOURMA	160	135	110	140	0,7						2	2	- 7,7
			2	î t	9	U \$ L	126	116	136	140	139	130	20 8
BOBO-DIOULASSO	183	175	151	7.0	1							3	22.0
		2	2	8	148	<u>z</u>	156	147	157	179	166	157	00
BOROMO	155	146	128	153	426	707					2	3	00,5
0	97,7			3	2	\$	146	131	147	168	141	147	4.17
5	040	110	136	3	128	- 13	127	133	92,	,			ř
GAOUA	193	163	160	200			-	7	000	148	127	136	6,50
		3	661	20	1/6	174	165	155	180	181	17R	171	2.0
								_	_		-	-	